Adding new column to existing DataFrame in Python pandas

I have the following indexed DataFrame with named columns and rows not- continuous numbers:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

I would like to add a new column, 'e' , to the existing data frame and do not want to change anything in the data frame (ie, the new column always has the same length as the DataFrame).

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

I tried different versions of join , append , merge , but I did not get the result I wanted, only errors at most. How can I add column e to the above example?


Use the original df1 indexes to create the series:

df1['e'] = Series(np.random.randn(sLength), index=df1.index)


Edit 2015
Some reported to get the SettingWithCopyWarning with this code.
However, the code still runs perfect with the current pandas version 0.16.1.

>>> sLength = len(df1['a'])
>>> df1
          a         b         c         d
6 -0.269221 -0.026476  0.997517  1.294385
8  0.917438  0.847941  0.034235 -0.448948

>>> df1['e'] = p.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e
6 -0.269221 -0.026476  0.997517  1.294385  1.757167
8  0.917438  0.847941  0.034235 -0.448948  2.228131

>>> p.version.short_version
'0.16.1'

The SettingWithCopyWarning aims to inform of a possibly invalid assignment on a copy of the Dataframe. It doesn't necessarily say you did it wrong (it can trigger false positives) but from 0.13.0 it let you know there are more adequate methods for the same purpose. Then, if you get the warning, just follow its advise: Try using .loc[row_index,col_indexer] = value instead

>>> df1.loc[:,'f'] = p.Series(np.random.randn(sLength), index=df1.index)
>>> df1
          a         b         c         d         e         f
6 -0.269221 -0.026476  0.997517  1.294385  1.757167 -0.050927
8  0.917438  0.847941  0.034235 -0.448948  2.228131  0.006109
>>> 

In fact, this is currently the more efficient method as described in pandas docs



Edit 2017

As indicated in the comments and by @Alexander, currently the best method to add the values of a Series as a new column of a DataFrame could be using assign :

df1 = df1.assign(e=p.Series(np.random.randn(sLength)).values)

这是添加新列的简单方法: df['e'] = e


I would like to add a new column, 'e', to the existing data frame and do not change anything in the data frame. (The series always got the same length as a dataframe.)

I assume that the index values in e match those in df1 .

The easiest way to initiate a new column named e , and assign it the values from your series e :

df['e'] = e.values

assign (Pandas 0.16.0+)

As of Pandas 0.16.0, you can also use assign , which assigns new columns to a DataFrame and returns a new object (a copy) with all the original columns in addition to the new ones.

df1 = df1.assign(e=e.values)

As per this example (which also includes the source code of the assign function), you can also include more than one column:

df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df.assign(mean_a=df.a.mean(), mean_b=df.b.mean())
   a  b  mean_a  mean_b
0  1  3     1.5     3.5
1  2  4     1.5     3.5

In context with your example:

np.random.seed(0)
df1 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
mask = df1.applymap(lambda x: x <-0.7)
df1 = df1[-mask.any(axis=1)]
sLength = len(df1['a'])
e = pd.Series(np.random.randn(sLength))

>>> df1
          a         b         c         d
0  1.764052  0.400157  0.978738  2.240893
2 -0.103219  0.410599  0.144044  1.454274
3  0.761038  0.121675  0.443863  0.333674
7  1.532779  1.469359  0.154947  0.378163
9  1.230291  1.202380 -0.387327 -0.302303

>>> e
0   -1.048553
1   -1.420018
2   -1.706270
3    1.950775
4   -0.509652
dtype: float64

df1 = df1.assign(e=e.values)

>>> df1
          a         b         c         d         e
0  1.764052  0.400157  0.978738  2.240893 -1.048553
2 -0.103219  0.410599  0.144044  1.454274 -1.420018
3  0.761038  0.121675  0.443863  0.333674 -1.706270
7  1.532779  1.469359  0.154947  0.378163  1.950775
9  1.230291  1.202380 -0.387327 -0.302303 -0.509652

The description of this new feature when it was first introduced can be found here.

链接地址: http://www.djcxy.com/p/12228.html

上一篇: 如何迭代Pandas中的DataFrame中的行?

下一篇: 在Python熊猫中向现有DataFrame添加新列