How could I optimize this calculation ? (x^a + y^a +z^a)^(1/a)

As the title shows. I need to do a lot of the calculation like this:

re = (x^a + y^a + z^a)^(1/a).

where {x, y, z} >= 0. more specific, a is a positive floating point constant, and x, y, z are floating point numbers. The ^ is an exponentiation operator.

Currently, I'd prefer not to use SIMD, but hope for some other trick to speed it up.

static void heavy_load(void) {
  static struct xyz_t {
    float x,y,z;
  };
  struct xyz_t xyzs[10000];
  float re[10000] = {.0f};
  const float a = 0.2;

  /* here fill xyzs using some random positive floating point values */

  for (i = 0; i < 10000; ++ i) {
    /* here is what we need to optimize */
    re[i] = pow((pow(xyzs[i].x, a) + pow(xyzs[i].y, a) + pow(xyzs[i].z, a)), 1.0/a);
  }
}

The first thing to do is to get rid of one of those exponentiations by factoring out one of the terms. The code below uses

(x^a + y^a + z^a)^(1/a) = x * ((1 + (y/x)^a + (z/x)^a)^(1/a))

Factoring out the largest of the three would be a bit safer, and perhaps more accurate.

Another optimization is to take advantage of the fact that a is either 0.1 or 0.2. Use a Chebychev polynomial approximation to approximate x^a. The code below only has an approximation for x^0.1; x^0.2 is simply that squared. Finally, since 1/a is a small integer (5 or 10), the final exponentiation can be replaced with a small number of multiplications.

To see what's going on in the functions powtenth and powtenthnorm see this answer: Optimizations for pow() with const non-integer exponent? .

#include <stdlib.h>
#include <math.h>


float powfive (float x);
float powtenth (float x);
float powtenthnorm (float x);

// Returns (x^0.2 + y^0.2 + z^0.2)^5
float pnormfifth (float x, float y, float z) {
   float u = powtenth(y/x);
   float v = powtenth(z/x);
   return x * powfive (1.0f + u*u + v*v);
}

// Returns (x^0.1 + y^0.1 + z^0.1)^10
float pnormtenth (float x, float y, float z) {
   float u = powtenth(y/x);
   float v = powtenth(z/x);
   float w = powfive (1.0f + u + v);
   return x * w * w;
}

// Returns x^5
float powfive (float x) {
   float xsq = x*x;
   return xsq*xsq*x;
}

// Returns x^0.1.
float powtenth (float x) {
   static const float pow2_tenth[10] = {
      1.0,
      pow(2.0, 0.1),
      pow(4.0, 0.1),
      pow(8.0, 0.1),
      pow(16.0, 0.1),
      pow(32.0, 0.1),
      pow(64.0, 0.1),
      pow(128.0, 0.1),
      pow(256.0, 0.1),
      pow(512.0, 0.1)
   };

   float s;
   int iexp;

   s = frexpf (x, &iexp);
   s *= 2.0;
   iexp -= 1;

   div_t qr = div (iexp, 10);
   if (qr.rem < 0) {
      qr.quot -= 1;
      qr.rem += 10;
   }

   return ldexpf (powtenthnorm(s)*pow2_tenth[qr.rem], qr.quot);
}

// Returns x^0.1 for x in [1,2), to within 1.2e-7 (relative error).
// Want more precision? Add more Chebychev polynomial coefs.
float powtenthnorm (float x) {
   static const int N = 8;

   // Chebychev polynomial terms.
   // Non-zero terms calculated via
   //   integrate (2/pi)*ChebyshevT[n,u]/sqrt(1-u^2)*((u+3)/2)^0.1
   //   from -1 to 1
   // Zeroth term is similar except it uses 1/pi rather than 2/pi.
   static const float Cn[N] = {
       1.0386703502389972,
       3.55833786872637476e-2,
      -2.7458105122604368629e-3,
       2.9828558990819401155e-4,
      -3.70977182883591745389e-5,
       4.96412322412154169407e-6,
      -6.9550743747592849e-7,
       1.00572368333558264698e-7};

   float Tn[N];

   float u = 2.0*x - 3.0;


   Tn[0] = 1.0;
   Tn[1] = u;
   for (int ii = 2; ii < N; ++ii) {
      Tn[ii] = 2*u*Tn[ii-1] - Tn[ii-2];
   }

   float y = 0.0;
   for (int ii = N-1; ii > 0; --ii) {
      y += Cn[ii]*Tn[ii];
   }

   return y + Cn[0];
}

A generic optimization would be to improve cache locality. Keep the result together with the arguments. Using powf instead of pow will prevent time wasted doing a float-double round trip. Any reasonable compiler will hoist 1/a out of the loop, so that isn't a problem.

You should profile whether auto-vectorization possibly done by the compiler would be fooled by not using explicit indexing on the pointer to the array.

typedef struct {
  float x,y,z, re;
} element_t;

void heavy_load(element_t * const elements, const int num_elts, const float a) {
  element_t * elts = elements;
  for (i = 0; i < num_elts; ++ i) {
    elts->re = 
      powf((powf(elts->x, a) + powf(elts->y, a) + powf(elts->z, a)), 1.0/a);
    elts ++;
  }
}

Using SSE2 SIMD, it would look like below. I'm using and including an excerpt from Julien Pommier's sse_mathfun.h for the exponentation; the license is appended below.

#include <emmintrin.h>
#include <math.h>
#include <assert.h>

#ifdef _MSC_VER /* visual c++ */
# define ALIGN16_BEG __declspec(align(16))
# define ALIGN16_END
#else /* gcc or icc */
# define ALIGN16_BEG
# define ALIGN16_END __attribute__((aligned(16)))
#endif

typedef __m128 v4sf;  // vector of 4 float (sse1)
typedef __m128i v4si; // vector of 4 int (sse2)

#define _PS_CONST(Name, Val)                                            
    static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PI32_CONST(Name, Val)                                            
    static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }

_PS_CONST(1  , 1.0f);
_PS_CONST(0p5, 0.5f);
_PI32_CONST(0x7f, 0x7f);
_PS_CONST(exp_hi,   88.3762626647949f);
_PS_CONST(exp_lo,   -88.3762626647949f);
_PS_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS_CONST(cephes_exp_C1, 0.693359375);
_PS_CONST(cephes_exp_C2, -2.12194440e-4);
_PS_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS_CONST(cephes_exp_p5, 5.0000001201E-1);

v4sf exp_ps(v4sf x) {
    v4sf tmp = _mm_setzero_ps(), fx;
    v4si emm0;
    v4sf one = *(v4sf*)_ps_1;

    x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
    x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);

    fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
    fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);

    emm0 = _mm_cvttps_epi32(fx);
    tmp  = _mm_cvtepi32_ps(emm0);

    v4sf mask = _mm_cmpgt_ps(tmp, fx);
    mask = _mm_and_ps(mask, one);
    fx = _mm_sub_ps(tmp, mask);

    tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
    v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
    x = _mm_sub_ps(x, tmp);
    x = _mm_sub_ps(x, z);

    z = _mm_mul_ps(x,x);

    v4sf y = *(v4sf*)_ps_cephes_exp_p0;
    y = _mm_mul_ps(y, x);
    y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
    y = _mm_mul_ps(y, x);
    y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
    y = _mm_mul_ps(y, x);
    y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
    y = _mm_mul_ps(y, x);
    y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
    y = _mm_mul_ps(y, x);
    y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
    y = _mm_mul_ps(y, z);
    y = _mm_add_ps(y, x);
    y = _mm_add_ps(y, one);

    emm0 = _mm_cvttps_epi32(fx);
    emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
    emm0 = _mm_slli_epi32(emm0, 23);
    v4sf pow2n = _mm_castsi128_ps(emm0);
    y = _mm_mul_ps(y, pow2n);
    return y;
}

typedef struct {
    float x,y,z, re;
} element_t;   

void fast(element_t * const elements, const int num_elts, const float a) {
    element_t * elts = elements;
    float logf_a = logf(a);
    float logf_1_a = logf(1.0/a);
    v4sf log_a = _mm_load1_ps(&logf_a);
    v4sf log_1_a = _mm_load1_ps(&logf_1_a);
    assert(num_elts % 3 == 0); // operates on 3 elements at a time

    // elts->re = powf((powf(elts->x, a) + powf(elts->y, a) + powf(elts->z, a)), 1.0/a);
    for (int i = 0; i < num_elts; i += 3) {
        // transpose
        // we save one operation over _MM_TRANSPOSE4_PS by skipping the last row of output
        v4sf r0 = _mm_load_ps(&elts[0].x); // x1,y1,z1,0
        v4sf r1 = _mm_load_ps(&elts[1].x); // x2,y2,z2,0
        v4sf r2 = _mm_load_ps(&elts[2].x); // x3,y3,z3,0
        v4sf r3 = _mm_setzero_ps();        // 0, 0, 0, 0
        v4sf t0 = _mm_unpacklo_ps(r0, r1); //  x1,x2,y1,y2
        v4sf t1 = _mm_unpacklo_ps(r2, r3); //  x3,0, y3,0
        v4sf t2 = _mm_unpackhi_ps(r0, r1); //  z1,z2,0, 0
        v4sf t3 = _mm_unpackhi_ps(r2, r3); //  z3,0, 0, 0
        r0 = _mm_movelh_ps(t0, t1);        // x1,x2,x3,0
        r1 = _mm_movehl_ps(t1, t0);        // y1,y2,y3,0
        r2 = _mm_movelh_ps(t2, t3);        // z1,z2,z3,0
        // perform pow(x,a),.. using the fact that pow(x,a) = exp(x * log(a))
        v4sf r0a = _mm_mul_ps(r0, log_a); // x1*log(a), x2*log(a), x3*log(a), 0
        v4sf r1a = _mm_mul_ps(r1, log_a); // y1*log(a), y2*log(a), y3*log(a), 0
        v4sf r2a = _mm_mul_ps(r2, log_a); // z1*log(a), z2*log(a), z3*log(a), 0
        v4sf ex0 = exp_ps(r0a); // pow(x1, a), ..., 0
        v4sf ex1 = exp_ps(r1a); // pow(y1, a), ..., 0
        v4sf ex2 = exp_ps(r2a); // pow(z1, a), ..., 0
        // sum
        v4sf s1 = _mm_add_ps(ex0, ex1);
        v4sf s2 = _mm_add_ps(sum1, ex2);
        // pow(sum, 1/a) = exp(sum * log(1/a))
        v4sf ps = _mm_mul_ps(s2, log_1_a);
        v4sf es = exp_ps(ps);
        ALIGN16_BEG float re[4] ALIGN16_END;
        _mm_store_ps(re, es);
        elts[0].re = re[0];
        elts[1].re = re[1];
        elts[2].re = re[2];
        elts += 3;
    }
}


/* Copyright (C) 2007  Julien Pommier
  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.
  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:
  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution. */

Some C optimizations - not much, but something.

[Edit] Sorry - back to annoy: If the FP values vary widely then quite often re = a (or b or c). Doing a test for large magnitude differences will negate the need to call pow() on some of x, y, or z. This helps the average, but not worst case time.

Replace 1.0/a with a_inverse which is set before the loop.

Replace pow() with powf() , else you are invoking the double version of pow() .

Minor: Initialization in float re[10000] = { 0.0f} is not needed with other than to freshen a memory cache.

Minor: using a pointer rather than indexing arrays may save a bit.

Minor: For select platforms, using type double may run faster. - reversing my above pow()/powf() comment.

Minor: Try 3 separate arrays of x,y,z. Each float * .

Obviously profiling helps but let's assume that is well know here.

链接地址: http://www.djcxy.com/p/15028.html

上一篇: C关联中的浮点操作?

下一篇: 我怎样才能优化这个计算? (x ^ a + y ^ a + z ^ a)^(1 / a)