最多不能超过50%。 矩阵乘法的理论性能
问题
我正在学习HPC和代码优化。 我试图在Goto的开创性矩阵乘法论文中复制结果(http://www.cs.utexas.edu/users/pingali/CS378/2008sp/papers/gotoPaper.pdf)。 尽管我尽了最大的努力,但我无法超过理论CPU性能的50%。
背景
在此处查看相关问题(优化的2×2矩阵乘法:组装速度较慢,相对于快速SIMD),包括有关我的硬件的信息
我所尝试过的
这篇相关论文(http://www.cs.utexas.edu/users/flame/pubs/blis3_ipdps14.pdf)对Goto的算法结构有很好的描述。 我在下面提供我的源代码。
我的问题
我正在寻求一般帮助。 我一直在研究这个太久,尝试过许多不同的算法,内联汇编,各种大小的内核(2x2,4x4,2x8,...,mxn,m和n大),但我似乎无法破解50%CPU Gflops 。 这纯粹是为了教育目的,而不是作业。
源代码
希望是可以理解的。 请问是否。 我设置了上面第二篇文章中描述的宏结构(for循环)。 我按照论文中的讨论打包矩阵,并在图11中以图形方式显示(http://www.cs.utexas.edu/users/flame/pubs/BLISTOMSrev2.pdf)。 我的内核计算2×8块,因为这似乎是Nehalem体系结构的最佳计算(参见GotoBLAS源代码 - 内核)。 内核基于计算rank-1更新的概念,如此处所述(http://code.google.com/p/blis/source/browse/config/template/kernels/3/bli_gemm_opt_mxn.c)
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <x86intrin.h>
#include <math.h>
#include <omp.h>
#include <stdint.h>
// define some prefetch functions
#define PREFETCHNTA(addr,nrOfBytesAhead)
_mm_prefetch(((char *)(addr))+nrOfBytesAhead,_MM_HINT_NTA)
#define PREFETCHT0(addr,nrOfBytesAhead)
_mm_prefetch(((char *)(addr))+nrOfBytesAhead,_MM_HINT_T0)
#define PREFETCHT1(addr,nrOfBytesAhead)
_mm_prefetch(((char *)(addr))+nrOfBytesAhead,_MM_HINT_T1)
#define PREFETCHT2(addr,nrOfBytesAhead)
_mm_prefetch(((char *)(addr))+nrOfBytesAhead,_MM_HINT_T2)
// define a min function
#ifndef min
#define min( a, b ) ( ((a) < (b)) ? (a) : (b) )
#endif
// zero a matrix
void zeromat(double *C, int n)
{
int i = n;
while (i--) {
int j = n;
while (j--) {
*(C + i*n + j) = 0.0;
}
}
}
// compute a 2x8 block from (2 x kc) x (kc x 8) matrices
inline void
__attribute__ ((gnu_inline))
__attribute__ ((aligned(64))) dgemm_2x8_sse(
int k,
const double* restrict a1, const int cs_a,
const double* restrict b1, const int rs_b,
double* restrict c11, const int rs_c
)
{
register __m128d xmm1, xmm4, //
r8, r9, r10, r11, r12, r13, r14, r15; // accumulators
// 10 registers declared here
r8 = _mm_xor_pd(r8,r8); // ab
r9 = _mm_xor_pd(r9,r9);
r10 = _mm_xor_pd(r10,r10);
r11 = _mm_xor_pd(r11,r11);
r12 = _mm_xor_pd(r12,r12); // ab + 8
r13 = _mm_xor_pd(r13,r13);
r14 = _mm_xor_pd(r14,r14);
r15 = _mm_xor_pd(r15,r15);
// PREFETCHT2(b1,0);
// PREFETCHT2(b1,64);
//int l = k;
while (k--) {
//PREFETCHT0(a1,0); // fetch 64 bytes from a1
// i = 0
xmm1 = _mm_load1_pd(a1);
xmm4 = _mm_load_pd(b1);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r8 = _mm_add_pd(r8,xmm4);
xmm4 = _mm_load_pd(b1 + 2);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r9 = _mm_add_pd(r9,xmm4);
xmm4 = _mm_load_pd(b1 + 4);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r10 = _mm_add_pd(r10,xmm4);
xmm4 = _mm_load_pd(b1 + 6);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r11 = _mm_add_pd(r11,xmm4);
//
// i = 1
xmm1 = _mm_load1_pd(a1 + 1);
xmm4 = _mm_load_pd(b1);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r12 = _mm_add_pd(r12,xmm4);
xmm4 = _mm_load_pd(b1 + 2);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r13 = _mm_add_pd(r13,xmm4);
xmm4 = _mm_load_pd(b1 + 4);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r14 = _mm_add_pd(r14,xmm4);
xmm4 = _mm_load_pd(b1 + 6);
xmm4 = _mm_mul_pd(xmm1,xmm4);
r15 = _mm_add_pd(r15,xmm4);
a1 += cs_a;
b1 += rs_b;
//PREFETCHT2(b1,0);
//PREFETCHT2(b1,64);
}
// copy result into C
PREFETCHT0(c11,0);
xmm1 = _mm_load_pd(c11);
xmm1 = _mm_add_pd(xmm1,r8);
_mm_store_pd(c11,xmm1);
xmm1 = _mm_load_pd(c11 + 2);
xmm1 = _mm_add_pd(xmm1,r9);
_mm_store_pd(c11 + 2,xmm1);
xmm1 = _mm_load_pd(c11 + 4);
xmm1 = _mm_add_pd(xmm1,r10);
_mm_store_pd(c11 + 4,xmm1);
xmm1 = _mm_load_pd(c11 + 6);
xmm1 = _mm_add_pd(xmm1,r11);
_mm_store_pd(c11 + 6,xmm1);
c11 += rs_c;
PREFETCHT0(c11,0);
xmm1 = _mm_load_pd(c11);
xmm1 = _mm_add_pd(xmm1,r12);
_mm_store_pd(c11,xmm1);
xmm1 = _mm_load_pd(c11 + 2);
xmm1 = _mm_add_pd(xmm1,r13);
_mm_store_pd(c11 + 2,xmm1);
xmm1 = _mm_load_pd(c11 + 4);
xmm1 = _mm_add_pd(xmm1,r14);
_mm_store_pd(c11 + 4,xmm1);
xmm1 = _mm_load_pd(c11 + 6);
xmm1 = _mm_add_pd(xmm1,r15);
_mm_store_pd(c11 + 6,xmm1);
}
// packs a matrix into rows of slivers
inline void
__attribute__ ((gnu_inline))
__attribute__ ((aligned(64))) rpack( double* restrict dst,
const double* restrict src,
const int kc, const int mc, const int mr, const int n)
{
double tmp[mc*kc] __attribute__ ((aligned(64)));
double* restrict ptr = &tmp[0];
for (int i = 0; i < mc; ++i)
for (int j = 0; j < kc; ++j)
*ptr++ = *(src + i*n + j);
ptr = &tmp[0];
//const int inc_dst = mr*kc;
for (int k = 0; k < mc; k+=mr)
for (int j = 0; j < kc; ++j)
for (int i = 0; i < mr*kc; i+=kc)
*dst++ = *(ptr + k*kc + j + i);
}
// packs a matrix into columns of slivers
inline void
__attribute__ ((gnu_inline))
__attribute__ ((aligned(64))) cpack(double* restrict dst,
const double* restrict src,
const int nc,
const int kc,
const int nr,
const int n)
{
double tmp[kc*nc] __attribute__ ((aligned(64)));
double* restrict ptr = &tmp[0];
for (int i = 0; i < kc; ++i)
for (int j = 0; j < nc; ++j)
*ptr++ = *(src + i*n + j);
ptr = &tmp[0];
// const int inc_k = nc/nr;
for (int k = 0; k < nc; k+=nr)
for (int j = 0; j < kc*nc; j+=nc)
for (int i = 0; i < nr; ++i)
*dst++ = *(ptr + k + i + j);
}
void blis_dgemm_ref(
const int n,
const double* restrict A,
const double* restrict B,
double* restrict C,
const int mc,
const int nc,
const int kc
)
{
int mr = 2;
int nr = 8;
double locA[mc*kc] __attribute__ ((aligned(64)));
double locB[kc*nc] __attribute__ ((aligned(64)));
int ii,jj,kk,i,j;
#pragma omp parallel num_threads(4) shared(A,B,C) private(ii,jj,kk,i,j,locA,locB)
{//use all threads in parallel
#pragma omp for
// partitions C and B into wide column panels
for ( jj = 0; jj < n; jj+=nc) {
// A and the current column of B are partitioned into col and row panels
for ( kk = 0; kk < n; kk+=kc) {
cpack(locB, B + kk*n + jj, nc, kc, nr, n);
// partition current panel of A into blocks
for ( ii = 0; ii < n; ii+=mc) {
rpack(locA, A + ii*n + kk, kc, mc, mr, n);
for ( i = 0; i < min(n-ii,mc); i+=mr) {
for ( j = 0; j < min(n-jj,nc); j+=nr) {
// inner kernel that compues 2 x 8 block
dgemm_2x8_sse( kc,
locA + i*kc , mr,
locB + j*kc , nr,
C + (i+ii)*n + (j+jj), n );
}
}
}
}
}
}
}
double compute_gflops(const double time, const int n)
{
// computes the gigaflops for a square matrix-matrix multiplication
double gflops;
gflops = (double) (2.0*n*n*n)/time/1.0e9;
return(gflops);
}
// ******* MAIN ********//
void main() {
clock_t time1, time2;
double time3;
double gflops;
const int trials = 10;
int nmax = 4096;
printf("%10s %10sn","N","Gflops/s");
int mc = 128;
int kc = 256;
int nc = 128;
for (int n = kc; n <= nmax; n+=kc) { //assuming kc is the max dim
double *A = NULL;
double *B = NULL;
double *C = NULL;
A = _mm_malloc (n*n * sizeof(*A),64);
B = _mm_malloc (n*n * sizeof(*B),64);
C = _mm_malloc (n*n * sizeof(*C),64);
srand(time(NULL));
// Create the matrices
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
A[i*n + j] = (double) rand()/RAND_MAX;
B[i*n + j] = (double) rand()/RAND_MAX;
//D[j*n + i] = B[i*n + j]; // Transpose
C[i*n + j] = 0.0;
}
}
// warmup
zeromat(C,n);
blis_dgemm_ref(n,A,B,C,mc,nc,kc);
zeromat(C,n);
time2 = 0;
for (int count = 0; count < trials; count++){// iterations per experiment here
time1 = clock();
blis_dgemm_ref(n,A,B,C,mc,nc,kc);
time2 += clock() - time1;
zeromat(C,n);
}
time3 = (double)(time2)/CLOCKS_PER_SEC/trials;
gflops = compute_gflops(time3, n);
printf("%10d %10fn",n,gflops);
_mm_free(A);
_mm_free(B);
_mm_free(C);
}
printf("tests are donen");
}
编辑1
OS = Win 7 64位
编译器= gcc 4.8.1,但32位和mingw(32位也。我正在努力获得一个“非安装”版本的mingw64,所以我可以生成更快的代码/工作与更多的XMM寄存器等。如果任何人有链接到与mingw-get
相似的mingw64安装,请发帖。我的工作计算机有太多的管理限制。
填料
您似乎经常打包A
矩阵的块。 你做
rpack(locA, A + ii*n + kk, kc, mc, mr, n);
但是,这仅取决于ii
和kk
,而不是jj
,但它是在内环内的jj
,所以你改装同样的事情的每一次迭代jj
。 我不认为这是必要的。 在我的代码中,我在矩阵乘法之前进行打包。 在矩阵乘法中打包可能效率更高,而值仍然在缓存中,但这样做更麻烦。 但是打包是O(n ^ 2)运算,矩阵乘法是O(n ^ 3)运算,所以在大矩阵的矩阵乘法之外打包并不是非常低效的(我知道从测试中也可以 - 评论出包装只会改变几个百分点的效率)。 然而,通过重新包装rpack
每次jj
迭代你已经有效地使其成为一个为O(n ^ 3)操作。
长城时间
你想要时间。 在Unix上,clock()函数不会返回挂墙时间(尽管它在具有MSVC的Windows上执行)。 它返回每个线程的累积时间。 这是我在OpenMP上看到的最常见的错误之一。
使用omp_get_wtime()
获取墙壁时间。
请注意,我不知道clock()
函数如何与MinGW或MinGW-w64一起工作(它们是单独的项目)。 MinGW链接到MSVCRT,所以我猜想MinGW的clock()
会像MSVC一样返回挂墙时间。 但是,MinGW-w64没有链接到MSVCRT(据我了解,它链接到像glibc这样的东西)。 这有可能是clock()
中的MinGW-W64执行相同的clock()
使用Unix一样。
超线程
超线程适用于经常停止CPU的代码。 这实际上是大部分代码,因为编写不会使CPU停滞的代码非常困难。 这就是为什么英特尔发明了超线程技术。 任务切换更容易,并且可以让CPU执行其他任务,而不是优化代码。 但是,对于高度优化的代码,超线程实际上可能会导致更糟糕的结果。 在我自己的矩阵乘法码当然是这种情况。 将线程数设置为您拥有的物理核心数(您的情况为两个)。
我的代码
以下是我的代码。 我没有在这里包含inner64
函数。 你可以在MSVC和GCC之间的性能差异中找到它,以获得高度优化的矩阵复制代码(使用名为AddDot4x4_vec_block_8wide
的令人讨厌和误导性的AddDot4x4_vec_block_8wide
)
我在阅读Goto论文之前以及在阅读Agner Fog的优化手册之前编写了这些代码。 您似乎在主循环中重新排序/打包矩阵。 这可能更有意义。 我不认为我按照相同的方式对它们重新排序,而且我只对输入矩阵(B)中的一个进行重新排序,而不是像你一样对它们进行重新排序。
在我的系统(Xeon E5-1620@3.6)上使用Linux和GCC时,此代码的性能约为此矩阵大小(4096x4096)的峰值的75%。 英特尔的MKL在我的系统上获得了这个矩阵大小的94%的峰值,所以显然还有改进的余地。
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <immintrin.h>
extern "C" void inner64(const float *a, const float *b, float *c);
void (*fp)(const float *a, const float *b, float *c) = inner64;
void reorder(float * __restrict a, float * __restrict b, int n, int bs) {
int nb = n/bs;
#pragma omp parallel for
for(int i=0; i<nb; i++) {
for(int j=0; j<nb; j++) {
for(int i2=0; i2<bs; i2++) {
for(int j2=0; j2<bs; j2++) {
b[bs*bs*(nb*i+j) + bs*i2+j2]= a[bs*(i*n+j) + i2*n + j2];
}
}
}
}
}
inline void gemm_block(float * __restrict a, float * __restrict b, float * __restrict c, int n, int n2) {
for(int i=0; i<n2; i++) {
fp(&a[i*n], b, &c[i*n]);
}
}
void gemm(float * __restrict a, float * __restrict b, float * __restrict c, int n, int bs) {
int nb = n/bs;
float *b2 = (float*)_mm_malloc(sizeof(float)*n*n,64);
reorder(b,b2,n,bs);
#pragma omp parallel for
for(int i=0; i<nb; i++) {
for(int j=0; j<nb; j++) {
for(int k=0; k<nb; k++) {
gemm_block(&a[bs*(i*n+k)],&b2[bs*bs*(k*nb+j)],&c[bs*(i*n+j)], n, bs);
}
}
}
_mm_free(b2);
}
int main() {
float peak = 1.0f*8*4*2*3.69f;
const int n = 4096;
float flop = 2.0f*n*n*n*1E-9f;
omp_set_num_threads(4);
float *a = (float*)_mm_malloc(sizeof(float)*n*n,64);
float *b = (float*)_mm_malloc(sizeof(float)*n*n,64);
float *c = (float*)_mm_malloc(sizeof(float)*n*n,64);
for(int i=0; i<n*n; i++) {
a[i] = 1.0f*rand()/RAND_MAX;
b[i] = 1.0f*rand()/RAND_MAX;
}
gemm(a,b,c,n,64); //warm OpenMP up
while(1) {
for(int i=0; i<n*n; i++) c[i] = 0;
double dtime = omp_get_wtime();
gemm(a,b,c,n,64);
dtime = omp_get_wtime() - dtime;
printf("time %.2f s, efficiency %.2f%%n", dtime, 100*flop/dtime/peak);
}
}
链接地址: http://www.djcxy.com/p/15087.html
上一篇: Can't get over 50% max. theoretical performance on matrix multiply