Do try/catch blocks hurt performance when exceptions are not thrown?

During a code review with a Microsoft employee we came across a large section of code inside a try{} block. She and an IT representative suggested this can have effects on performance of the code. In fact, they suggested most of the code should be outside of try/catch blocks, and that only important sections should be checked. The Microsoft employee added and said an upcoming white paper warns against incorrect try/catch blocks.

I've looked around and found it can affect optimizations, but it seems to only apply when a variable is shared between scopes.

I'm not asking about maintainability of the code, or even handling the right exceptions (the code in question needs re-factoring, no doubt). I'm also not referring to using exceptions for flow control, this is clearly wrong in most cases. Those are important issues (some are more important), but not the focus here.

How do try/catch blocks affect performance when exceptions are not thrown?

EDIT: I'm adding a bounty. There are interesting responses, but I would like to get some more input.


Check it.

static public void Main(string[] args)
{
    Stopwatch w = new Stopwatch();
    double d = 0;

    w.Start();

    for (int i = 0; i < 10000000; i++)
    {
        try
        {
            d = Math.Sin(1);
        }
        catch (Exception ex)
        {
            Console.WriteLine(ex.ToString());
        }
    }

    w.Stop();
    Console.WriteLine(w.Elapsed);
    w.Reset();
    w.Start();

    for (int i = 0; i < 10000000; i++)
    {
        d = Math.Sin(1);
    }

    w.Stop();
    Console.WriteLine(w.Elapsed);
}

Output:

00:00:00.4269033  // with try/catch
00:00:00.4260383  // without.

In milliseconds:

449
416

New code:

for (int j = 0; j < 10; j++)
{
    Stopwatch w = new Stopwatch();
    double d = 0;
    w.Start();

    for (int i = 0; i < 10000000; i++)
    {
        try
        {
            d = Math.Sin(d);
        }

        catch (Exception ex)
        {
            Console.WriteLine(ex.ToString());
        }

        finally
        {
            d = Math.Sin(d);
        }
    }

    w.Stop();
    Console.Write("   try/catch/finally: ");
    Console.WriteLine(w.ElapsedMilliseconds);
    w.Reset();
    d = 0;
    w.Start();

    for (int i = 0; i < 10000000; i++)
    {
        d = Math.Sin(d);
        d = Math.Sin(d);
    }

    w.Stop();
    Console.Write("No try/catch/finally: ");
    Console.WriteLine(w.ElapsedMilliseconds);
    Console.WriteLine();
}

New results:

   try/catch/finally: 382
No try/catch/finally: 332

   try/catch/finally: 375
No try/catch/finally: 332

   try/catch/finally: 376
No try/catch/finally: 333

   try/catch/finally: 375
No try/catch/finally: 330

   try/catch/finally: 373
No try/catch/finally: 329

   try/catch/finally: 373
No try/catch/finally: 330

   try/catch/finally: 373
No try/catch/finally: 352

   try/catch/finally: 374
No try/catch/finally: 331

   try/catch/finally: 380
No try/catch/finally: 329

   try/catch/finally: 374
No try/catch/finally: 334

After seeing all the stats for with try/catch and without try/catch, curiosity forced me to look behind to see what is generated for both the cases. Here is the code:

C#:

private static void TestWithoutTryCatch(){
    Console.WriteLine("SIN(1) = {0} - No Try/Catch", Math.Sin(1)); 
}

MSIL:

.method private hidebysig static void  TestWithoutTryCatch() cil managed
{
  // Code size       32 (0x20)
  .maxstack  8
  IL_0000:  nop
  IL_0001:  ldstr      "SIN(1) = {0} - No Try/Catch"
  IL_0006:  ldc.r8     1.
  IL_000f:  call       float64 [mscorlib]System.Math::Sin(float64)
  IL_0014:  box        [mscorlib]System.Double
  IL_0019:  call       void [mscorlib]System.Console::WriteLine(string,
                                                                object)
  IL_001e:  nop
  IL_001f:  ret
} // end of method Program::TestWithoutTryCatch

C#:

private static void TestWithTryCatch(){
    try{
        Console.WriteLine("SIN(1) = {0}", Math.Sin(1)); 
    }
    catch (Exception ex){
        Console.WriteLine(ex);
    }
}

MSIL:

.method private hidebysig static void  TestWithTryCatch() cil managed
{
  // Code size       49 (0x31)
  .maxstack  2
  .locals init ([0] class [mscorlib]System.Exception ex)
  IL_0000:  nop
  .try
  {
    IL_0001:  nop
    IL_0002:  ldstr      "SIN(1) = {0}"
    IL_0007:  ldc.r8     1.
    IL_0010:  call       float64 [mscorlib]System.Math::Sin(float64)
    IL_0015:  box        [mscorlib]System.Double
    IL_001a:  call       void [mscorlib]System.Console::WriteLine(string,
                                                                  object)
    IL_001f:  nop
    IL_0020:  nop
    IL_0021:  leave.s    IL_002f //JUMP IF NO EXCEPTION
  }  // end .try
  catch [mscorlib]System.Exception 
  {
    IL_0023:  stloc.0
    IL_0024:  nop
    IL_0025:  ldloc.0
    IL_0026:  call       void [mscorlib]System.Console::WriteLine(object)
    IL_002b:  nop
    IL_002c:  nop
    IL_002d:  leave.s    IL_002f
  }  // end handler
  IL_002f:  nop
  IL_0030:  ret
} // end of method Program::TestWithTryCatch

I'm not an expert in IL but we can see that an local exception object is created on fourth line .locals init ([0] class [mscorlib]System.Exception ex) after that things are pretty same as for method without try/catch till the line seventeen IL_0021: leave.s IL_002f . If an exception occurs the control jumps to line IL_0025: ldloc.0 otherwise we jump to label IL_002d: leave.s IL_002f and function returns.

I can safely assume that if no exceptions occur then it is the overhead of creating local variables to hold exception objects only and a jump instruction.


不可以。如果try / finally块排除的微小优化实际上会对程序产生可衡量的影响,那么您可能不应该首先使用.NET。

链接地址: http://www.djcxy.com/p/17964.html

上一篇: Java:检查与未经检查的异常说明

下一篇: 当不抛出异常时,是否尝试/捕获块会损害性能?