Clustering using a custom distance metric for lat/long pairs
I'm trying to specify a custom clustering function for the scikit-learn DBSCAN implementation:
def geodistance(latLngA, latLngB):
print latLngA, latLngB
return vincenty(latLngA, latLngB).miles
cluster_labels = DBSCAN(
eps=500,
min_samples=max(2, len(found_geopoints)/10),
metric=geodistance
).fit(np.array(found_geopoints)).labels_
However, when I print out the arguments to my distance function they aren't at all what I would expect:
[ 0.53084126 0.19584111 0.99640966 0.88013373 0.33753788 0.79983037
0.71716144 0.85832664 0.63559538 0.23032912]
[ 0.53084126 0.19584111 0.99640966 0.88013373 0.33753788 0.79983037
0.71716144 0.85832664 0.63559538 0.23032912]
This is what my found_geopoints array looks like:
[[ 4.24680600e+01 1.40868060e+02]
[ -2.97677600e+01 -6.20477000e+01]
[ 3.97550400e+01 2.90069000e+00]
[ 4.21144200e+01 1.43442500e+01]
[ 8.56111000e+00 1.24771390e+02]
...
So why aren't the arguments to the distance function latitude longitude pairs?
我似乎已经找到了使用以下方法计算距离矩阵的工作:http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances.html然后将其用作DBSCAN(metric='precomputed').fit(distance_matrix)
的参数DBSCAN(metric='precomputed').fit(distance_matrix)
You can do this with scikit-learn: use the haversine metric with the ball-tree algorithm, and pass radian units into the DBSCAN fit method.
This tutorial demonstrates how to cluster spatial lat-long data with scikit-learn's DBSCAN using the haversine metric to cluster based on accurate geodetic distances between lat-long points:
df = pd.read_csv('gps.csv')
coords = df.as_matrix(columns=['lat', 'lon'])
db = DBSCAN(eps=eps, min_samples=ms, algorithm='ball_tree', metric='haversine').fit(np.radians(coords))
Notice that the coordinates are passed into the .fit()
method as radian units, and that the epsilon parameter value must also be in radian units as well.
If you want epsilon to be, say 1.5km, then the epsilon parameter value in radian units would = 1.5/6371.
链接地址: http://www.djcxy.com/p/20206.html上一篇: 使用模板haskell的多个函数定义
下一篇: 使用自定义距离度量来对经纬度对进行聚类