What's the difference between the atomic and nonatomic attributes?
What do atomic
and nonatomic
mean in property declarations?
@property(nonatomic, retain) UITextField *userName;
@property(atomic, retain) UITextField *userName;
@property(retain) UITextField *userName;
What is the operational difference between these three?
The last two are identical; "atomic" is the default behavior (note that it is not actually a keyword; it is specified only by the absence of nonatomic
-- atomic
was added as a keyword in recent versions of llvm/clang).
Assuming that you are @synthesizing the method implementations, atomic vs. non-atomic changes the generated code. If you are writing your own setter/getters, atomic/nonatomic/retain/assign/copy are merely advisory. (Note: @synthesize is now the default behavior in recent versions of LLVM. There is also no need to declare instance variables; they will be synthesized automatically, too, and will have an _
prepended to their name to prevent accidental direct access).
With "atomic", the synthesized setter/getter will ensure that a whole value is always returned from the getter or set by the setter, regardless of setter activity on any other thread. That is, if thread A is in the middle of the getter while thread B calls the setter, an actual viable value -- an autoreleased object, most likely -- will be returned to the caller in A.
In nonatomic
, no such guarantees are made. Thus, nonatomic
is considerably faster than "atomic".
What "atomic" does not do is make any guarantees about thread safety. If thread A is calling the getter simultaneously with thread B and C calling the setter with different values, thread A may get any one of the three values returned -- the one prior to any setters being called or either of the values passed into the setters in B and C. Likewise, the object may end up with the value from B or C, no way to tell.
Ensuring data integrity -- one of the primary challenges of multi-threaded programming -- is achieved by other means.
Adding to this:
atomicity
of a single property also cannot guarantee thread safety when multiple dependent properties are in play.
Consider:
@property(atomic, copy) NSString *firstName;
@property(atomic, copy) NSString *lastName;
@property(readonly, atomic, copy) NSString *fullName;
In this case, thread A could be renaming the object by calling setFirstName:
and then calling setLastName:
. In the meantime, thread B may call fullName
in between thread A's two calls and will receive the new first name coupled with the old last name.
To address this, you need a transactional model. Ie some other kind of synchronization and/or exclusion that allows one to exclude access to fullName
while the dependent properties are being updated.
This is explained in Apple's documentation, but below are some examples of what is actually happening. Note that there is no "atomic" keyword, if you do not specify "nonatomic" then the property is atomic, but specifying "atomic" explicitly will result in an error.
//@property(nonatomic, retain) UITextField *userName;
//Generates roughly
- (UITextField *) userName {
return userName;
}
- (void) setUserName:(UITextField *)userName_ {
[userName_ retain];
[userName release];
userName = userName_;
}
Now, the atomic variant is a bit more complicated:
//@property(retain) UITextField *userName;
//Generates roughly
- (UITextField *) userName {
UITextField *retval = nil;
@synchronized(self) {
retval = [[userName retain] autorelease];
}
return retval;
}
- (void) setUserName:(UITextField *)userName_ {
@synchronized(self) {
[userName_ retain];
[userName release];
userName = userName_;
}
}
Basically, the atomic version has to take a lock in order to guarantee thread safety, and also is bumping the ref count on the object (and the autorelease count to balance it) so that the object is guaranteed to exist for the caller, otherwise there is a potential race condition if another thread is setting the value, causing the ref count to drop to 0.
There are actually a large number of different variants of how these things work depending on whether the properties are scalar values or objects, and how retain, copy, readonly, nonatomic, etc interact. In general the property synthesizers just know how to do the "right thing" for all combinations.
Atomic
Non-Atomic
上一篇: 我应该如何通过多个视图控制器传输数据?
下一篇: 原子和非原子属性之间有什么区别?