当另一个公式似乎更有意义时,基于事实的罪孽近似文献总是使用这个公式?
关于用表格计算基本函数sin
的文献指的是公式:
sin(x) = sin(Cn) * cos(h) + cos(Cn) * sin(h)
其中x = Cn + h
, Cn
是已经预先计算出的sin(Cn)
和cos(Cn)
并且可以在表中使用的常数,并且如果遵循Gal的方法, Cn
被选择为使得sin(Cn)
和cos(Cn)
近似为浮点数。 数量h
接近0.0
。 这篇文章的参考例子(第7页)。
我不明白为什么这是有道理的:无论如何计算, cos(h)
对于h
某些值可能至少有0.5 ULP,并且由于它接近1.0
,这似乎有一个很大的影响在以这种方式计算时结果sin(x)
的精度。
我不明白为什么不使用下面的公式:
sin(x) = sin(Cn) + (sin(Cn) * (cos(h) - 1.0) + cos(Cn) * sin(h))
然后,两个量(cos(h) - 1.0)
和sin(h)
可以用多项式近似,这些多项式很容易做到精确,因为它们产生接近零的结果。 sin(Cn) * (cos(h) - 1.0)
, cos(Cn) * sin(h)
及其总和的值仍然很小,其绝对精度表示为总和表示的小量的ULP,因此将这个量添加到sin(Cn)
几乎正确舍入。
我是否错过了一些让更早,更流行,更简单的配方表现良好的东西? 作者是否认为这是理所当然的,读者会明白第一个公式实际上是作为第二个公式实现的?
编辑:例子
用于计算单精度sinf()
和cosf()
的单精度表可能以单精度包含以下点:
f | cos f | sin f -----------------------+-----------------------+--------------------- 0.017967 0x1.2660bcp-6 | 0x1.ffead8p-1 | 0x1.265caep-6 | (actual value:) | (actual value:) | ~0x1.ffead8000715dp-1 | ~0x1.265cae000e6f9p-6
以下函数是专门用于大约0.017967
单精度函数:
float sinf_trad(float x)
{
float h = x - 0x1.2660bcp-6f;
return 0x1.265caep-6f * cos_0(h) + 0x1.ffead8p-1f * sin_0(h);
}
float sinf_new(float x)
{
float h = x - 0x1.2660bcp-6f;
return 0x1.265caep-6f + (0x1.265caep-6f * cosm1_0(h) + 0x1.ffead8p-1f * sin_0(h));
}
在0.01f和0.025f之间测试这些函数似乎表明新公式给出了更精确的结果:
$ gcc -std=c99 test.c && ./a.out relative error, traditional: 2.169624e-07, new: 1.288049e-07 sum of squares of absolute error, traditional: 6.616202e-12, new: 2.522784e-12
我拿了几个快捷方式,所以请看完整的程序。
那么这个公式是一个开始。 然后根据上下文可以完成其他转换。 我同意如果以目标精度应用公式sin(x) = sin(Cn) * cos(h) + cos(Cn) * sin(h)
,则sin(Cn) * cos(h)
的结果高达1/2 ulp,如果目标是要获得准确的结果,这是不好的。 然而,有些术语有时使用伪扩展以更高的精度表达。 例如,一个数可以用一对(a,b)表示,其中b远小于a,其值被视为a + b。 在这种情况下,cos(h)可以用一对(1,h')来表示,并且计算等同于你的建议。
或者,一旦给出用于评估cos(h)和sin(h)的公式,可以详细描述实现。 参见Stehlé和Zimmermann的论文中的第3.1节:他们定义了C *(h)= C(h)-1,并且在最终公式中使用了C *,这基本上就是你的建议。
注意:我注意到使用上述公式是最佳选择。 可以从sin(x) = sin(Cn) + error_term
,并以其他方式计算误差项。
下面的实现部分地回答了这个问题,因为它是一个单精度的正弦实现,使用问题中提出的公式,精确到0.53 ULP超过[0 ... 1.57],准确到0.5 ULP为99.98%它在这个范围内的论点。
具体来说,我得到的输出:
error 285758762/536870912 ULP sin(2.11219326e-01) ref:2.09652290e-01 new:2.09652275e-01 differences: 176880 / 1070134723
这意味着错误不超过ULP的285/536(大约0.53 ULP),并且176880是错误高于0.5 ULP的参数的数量,总共有1070134723个参数。
用简单的sin(Cn) * cos(h) + cos(Cn) * sin(h)
公式来计算这种结果似乎是不可能的,而且只有单精度计算。 该问题中引用的文章暗示“为了实现总体准确性,术语c0*h
正在以扩展精度进行评估”。
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
float c_cos_sin[][3] = {
// 0x0.000000000p+0 /* 0.000000 */, 0x1.000000p+0, 0x0.000000p+0,
// 0x0.00fb76590p+2 /* 0.015348 */, 0x1.fff090p-1, 0x1.f6e7a4p-7,
// 0x0.01fd02f80p+2 /* 0.031068 */, 0x1.ffc0c0p-1, 0x1.fcee02p-6,
// 0x0.0302f6280p+2 /* 0.047056 */, 0x1.ff6eeap-1, 0x1.8156aap-5,
// 0x0.04029a400p+2 /* 0.062659 */, 0x1.fefec8p-1, 0x1.007b94p-4,
// 0x0.0500a9d80p+2 /* 0.078165 */, 0x1.fe6fcap-1, 0x1.3fd706p-4,
// 0x0.060215b80p+2 /* 0.093877 */, 0x1.fdbedcp-1, 0x1.7ff4e8p-4,
// 0x0.070225580p+2 /* 0.109506 */, 0x1.fceee8p-1, 0x1.bfa3fcp-4,
// 0x0.080460e00p+2 /* 0.125267 */, 0x1.fbfcf6p-1, 0x1.ffc0f6p-4,
// 0x0.08fed4a00p+2 /* 0.140554 */, 0x1.faf372p-1, 0x1.1ee830p-3,
// 0x0.0a0054100p+2 /* 0.156270 */, 0x1.f9c2d8p-1, 0x1.3ebd74p-3,
// 0x0.0afc8eb00p+2 /* 0.171665 */, 0x1.f87978p-1, 0x1.5dd872p-3,
0x0.0bff5db00p+2 /* 0.187461 */, 0x1.f707b0p-1, 0x1.7dad14p-3,
0x0.0cfe70200p+2 /* 0.203030 */, 0x1.f57bcep-1, 0x1.9cf438p-3,
0x0.0e024ef00p+2 /* 0.218891 */, 0x1.f3c87ap-1, 0x1.bcb7a0p-3,
0x0.0efeab400p+2 /* 0.234294 */, 0x1.f202ecp-1, 0x1.db74a8p-3,
0x0.10003da00p+2 /* 0.250015 */, 0x1.f014d0p-1, 0x1.fab664p-3,
0x0.110242c00p+2 /* 0.265763 */, 0x1.ee0660p-1, 0x1.0cf2f4p-2,
0x0.12055d400p+2 /* 0.281577 */, 0x1.ebd62ap-1, 0x1.1c8a4ap-2,
0x0.13025de00p+2 /* 0.297019 */, 0x1.e994c2p-1, 0x1.2bb212p-2,
0x0.13fc96600p+2 /* 0.312292 */, 0x1.e73c4ep-1, 0x1.3a9d34p-2,
0x0.15014c400p+2 /* 0.328204 */, 0x1.e4abbcp-1, 0x1.4a1472p-2,
0x0.15fe27a00p+2 /* 0.343637 */, 0x1.e210eep-1, 0x1.58fffep-2,
0x0.1703b1200p+2 /* 0.359600 */, 0x1.df4050p-1, 0x1.685884p-2,
0x0.180296e00p+2 /* 0.375158 */, 0x1.dc63e8p-1, 0x1.7736b2p-2,
0x0.18fc8a600p+2 /* 0.390414 */, 0x1.d9790cp-1, 0x1.85b472p-2,
0x0.19ffac000p+2 /* 0.406230 */, 0x1.d654fap-1, 0x1.94a1ecp-2,
0x0.1aff07c00p+2 /* 0.421816 */, 0x1.d31f26p-1, 0x1.a33e6ap-2,
0x0.1c0162800p+2 /* 0.437585 */, 0x1.cfc21ep-1, 0x1.b1ec42p-2,
0x0.1cfe63200p+2 /* 0.453027 */, 0x1.cc5a50p-1, 0x1.c0317ep-2,
0x0.1e0153a00p+2 /* 0.468831 */, 0x1.c8c0f4p-1, 0x1.ceb01ep-2,
0x0.1efe6d800p+2 /* 0.484279 */, 0x1.c52024p-1, 0x1.dcbe7ep-2,
0x0.1ffde5600p+2 /* 0.499872 */, 0x1.c15a92p-1, 0x1.ead0fcp-2,
0x0.20fa9ac00p+2 /* 0.515296 */, 0x1.bd83eap-1, 0x1.f89e82p-2,
0x0.220491000p+2 /* 0.531529 */, 0x1.b95c6cp-1, 0x1.038212p-1,
0x0.22ff9c800p+2 /* 0.546851 */, 0x1.b55542p-1, 0x1.0a3d7ap-1,
0x0.23faafc00p+2 /* 0.562176 */, 0x1.b133aep-1, 0x1.10e916p-1,
0x0.250a2cc00p+2 /* 0.578746 */, 0x1.ac9ed2p-1, 0x1.180d0ep-1,
0x0.25fee2800p+2 /* 0.593682 */, 0x1.a863d2p-1, 0x1.1e6bdep-1,
0x0.2700b4000p+2 /* 0.609418 */, 0x1.a3d498p-1, 0x1.251056p-1,
0x0.28025e000p+2 /* 0.625144 */, 0x1.9f2b7ap-1, 0x1.2ba13ap-1,
0x0.28f975400p+2 /* 0.640226 */, 0x1.9a9aa0p-1, 0x1.31db54p-1,
0x0.29fc6dc00p+2 /* 0.656032 */, 0x1.95b7ecp-1, 0x1.384ef4p-1,
0x0.2afc27c00p+2 /* 0.671640 */, 0x1.90cb6cp-1, 0x1.3e9a4ap-1,
0x0.2c0659c00p+2 /* 0.687888 */, 0x1.8b90c6p-1, 0x1.45127ap-1,
0x0.2d017dc00p+2 /* 0.703216 */, 0x1.868952p-1, 0x1.4b18dep-1,
0x0.2e04f3c00p+2 /* 0.719052 */, 0x1.813e8cp-1, 0x1.513d70p-1,
0x0.2efcb8800p+2 /* 0.734175 */, 0x1.7c19bcp-1, 0x1.5706f0p-1,
0x0.300642800p+2 /* 0.750382 */, 0x1.767dc8p-1, 0x1.5d2464p-1,
0x0.30ff5cc00p+2 /* 0.765586 */, 0x1.7123d0p-1, 0x1.62cb9cp-1,
0x0.3204f6c00p+2 /* 0.781553 */, 0x1.6b6d98p-1, 0x1.68a4d6p-1,
0x0.3303af000p+2 /* 0.797100 */, 0x1.65c70cp-1, 0x1.6e4010p-1,
0x0.34002f400p+2 /* 0.812511 */, 0x1.601740p-1, 0x1.73b86cp-1,
0x0.35080ac00p+2 /* 0.828616 */, 0x1.5a0f1cp-1, 0x1.79579cp-1,
0x0.35fda7800p+2 /* 0.843607 */, 0x1.545d16p-1, 0x1.7e7cc6p-1,
0x0.37040f800p+2 /* 0.859623 */, 0x1.4e31bep-1, 0x1.83e3aep-1,
0x0.3800eac00p+2 /* 0.875056 */, 0x1.482b1cp-1, 0x1.89002ap-1,
0x0.390737c00p+2 /* 0.891066 */, 0x1.41d5b8p-1, 0x1.8e3432p-1,
0x0.39fce7800p+2 /* 0.906061 */, 0x1.3bd3dep-1, 0x1.92fc2ap-1,
0x0.3b0596c00p+2 /* 0.922216 */, 0x1.3546c4p-1, 0x1.9808d0p-1,
0x0.3bf971c00p+2 /* 0.937100 */, 0x1.2f2b58p-1, 0x1.9c979ep-1,
0x0.3d0275800p+2 /* 0.953275 */, 0x1.2874c8p-1, 0x1.a17120p-1,
0x0.3e02c4400p+2 /* 0.968919 */, 0x1.21e3cap-1, 0x1.a60740p-1,
0x0.3ef759000p+2 /* 0.983847 */, 0x1.1b8ec4p-1, 0x1.aa4f02p-1,
0x0.3ff90a800p+2 /* 0.999575 */, 0x1.14d158p-1, 0x1.aeb732p-1,
0x0.40f703800p+2 /* 1.015077 */, 0x1.0e1baep-1, 0x1.b2f468p-1,
0x0.420693000p+2 /* 1.031651 */, 0x1.06dcb2p-1, 0x1.b75f2ap-1,
0x0.4300fb800p+2 /* 1.046935 */, 0x1.001dcep-1, 0x1.bb5678p-1,
0x0.440282800p+2 /* 1.062653 */, 0x1.f23bb2p-2, 0x1.bf4efcp-1,
0x0.44fb18000p+2 /* 1.077826 */, 0x1.e49a58p-2, 0x1.c3095ep-1,
0x0.45fe26000p+2 /* 1.093637 */, 0x1.d647a4p-2, 0x1.c6cfaap-1,
0x0.4700de800p+2 /* 1.109428 */, 0x1.c7dba0p-2, 0x1.ca77aap-1,
0x0.47fd2d800p+2 /* 1.124828 */, 0x1.b9af14p-2, 0x1.cdec48p-1,
0x0.48fd3c000p+2 /* 1.140456 */, 0x1.ab3138p-2, 0x1.d1515ep-1,
0x0.49f66d000p+2 /* 1.155666 */, 0x1.9cfd2cp-2, 0x1.d48338p-1,
0x0.4b05ec000p+2 /* 1.172236 */, 0x1.8d67dcp-2, 0x1.d7deb0p-1,
0x0.4bfebf800p+2 /* 1.187424 */, 0x1.7f0718p-2, 0x1.dad544p-1,
0x0.4cfa07800p+2 /* 1.202761 */, 0x1.706b10p-2, 0x1.ddb6e0p-1,
0x0.4e0324800p+2 /* 1.218942 */, 0x1.60e920p-2, 0x1.e0a1e6p-1,
0x0.4efdb7800p+2 /* 1.234236 */, 0x1.522b24p-2, 0x1.e34658p-1,
0x0.4ffb51000p+2 /* 1.249714 */, 0x1.432afap-2, 0x1.e5d57ep-1,
0x0.50fb6d000p+2 /* 1.265346 */, 0x1.33f0b2p-2, 0x1.e84ce2p-1,
0x0.5200bc000p+2 /* 1.281295 */, 0x1.24536ep-2, 0x1.eab19cp-1,
0x0.52fbc0800p+2 /* 1.296616 */, 0x1.1541a6p-2, 0x1.ece01ep-1,
0x0.54066d800p+2 /* 1.312892 */, 0x1.052cfep-2, 0x1.ef1104p-1,
0x0.550424000p+2 /* 1.328378 */, 0x1.eb9ff8p-3, 0x1.f1077cp-1,
0x0.55f93c800p+2 /* 1.343337 */, 0x1.cdd470p-3, 0x1.f2cfeap-1,
0x0.56fa9d000p+2 /* 1.359046 */, 0x1.ae6e42p-3, 0x1.f49074p-1,
0x0.57ff02000p+2 /* 1.374939 */, 0x1.8e8e2cp-3, 0x1.f63612p-1,
0x0.58f813000p+2 /* 1.390141 */, 0x1.6ff8f0p-3, 0x1.f7aaf6p-1,
0x0.5a0036800p+2 /* 1.406263 */, 0x1.4f722cp-3, 0x1.f915dcp-1,
0x0.5b005b800p+2 /* 1.421897 */, 0x1.2fd214p-3, 0x1.fa55aep-1,
0x0.5bfe01800p+2 /* 1.437378 */, 0x1.106e24p-3, 0x1.fb732ap-1,
0x0.5cf89f000p+2 /* 1.452675 */, 0x1.e2b3c0p-4, 0x1.fc6ea8p-1,
0x0.5e00f4800p+2 /* 1.468808 */, 0x1.a104e8p-4, 0x1.fd56eap-1,
0x0.5f0527000p+2 /* 1.484689 */, 0x1.60420cp-4, 0x1.fe1a64p-1,
0x0.5fffc8000p+2 /* 1.499987 */, 0x1.21cb4cp-4, 0x1.feb78ap-1,
0x0.610318000p+2 /* 1.515814 */, 0x1.c23092p-5, 0x1.ff39eep-1,
0x0.62032d800p+2 /* 1.531444 */, 0x1.424a9cp-5, 0x1.ff9a86p-1,
0x0.62fd46000p+2 /* 1.546709 */, 0x1.8a9d8cp-6, 0x1.ffd9fap-1,
0x0.63fbc1800p+2 /* 1.562241 */, 0x1.1856c2p-7, 0x1.fffb34p-1,
0x0.65011f000p+2 /* 1.578193 */, -0x1.e4c59ap-8, 0x1.fffc6ap-1,
};
/*@ requires 0 <= x <= 1.6 ; */
float my_sinf(float x)
{
const float offs = 0x0.0b8p+2f;
if (x < offs)
{
float xx = x * x;
/* Remez-optimized polynomial for relative accuracy on -0.164 .. 0.164,
Not the full -0.18 .. 0.18 where it is used, which makes it worse
on -0.164 .. 0.164. But even optimized without regard for 0.164 .. 0.18
It is better than the table entry + correction there so we use it there
*/
return x + x * xx * (-0.16666660487324f + xx * 8.3259065018069e-3f);
}
int i = (x - offs) * 64.0f;
float *p = c_cos_sin[i];
float F = p[0];
float C = p[1];
float S = p[2];
float h = x - F;
#if 0
float s = S * (cosl(h) - 1.0) + C * sinl(h); // ext-double computation
#endif
#if 1
// Two Remez-optimized polynomials for absolute accuracy on -0.008 .. 0.008
float s = h * (C + h * (-0.4999976959797f * S + h * -0.166666183241f * C));
#endif
return S + s;
}
unsigned int m, c, t;
uint64_t max_ulp;
int main(){
for (float f = 0.0f; f < 1.57f; f = nextafterf(f, 3.0f))
{
double rd = sin(f);
float r = rd;
float n = my_sinf(f);
t++;
if (r != n)
{
c++;
uint64_t in, ir;
double nd = n;
memcpy(&in, &nd, 8);
memcpy(&ir, &rd, 8);
uint64_t ulp = in > ir ? in - ir : ir - in;
if (ulp > max_ulp)
printf("error %" PRIu64 "/536870912 ULP sin(%.8e) ref:%.8e new:%.8e n",
ulp, f, r, n);
if (ulp > max_ulp)
max_ulp = ulp;
}
}
printf("differences: %u / %un", c, t);
}
你正在遇到理论数学和实际数值计算之间的界限。
三角身份
sin(a + b) = sin(a) * cos( b ) + cos(a) * sin(b)
引起你引用的公式:
sin(x) = sin(Cn) * cos(h) + cos(Cn) * sin(h)
当你用Cn + h代替x时。 这个公式在数学上是精确的。
但是,由于实际数值计算的局限性,即您的情况中的浮点运算,我们没有精确的数值计算这些公式的无限精度。 在实践中,我们需要考虑我们可以用来表示表格中的值的准确度,以及当我们对这些有限的准确度值执行有限的准确度计算时引入了什么错误。 涉及实际数值计算的数学学科是数值分析。
维基百科上的数值分析有一个非常简短的摘要,其中包含许多与主题内各主题相关的链接。 我认为你可能会发现函数的计算值和插值,外推和回归特别相关。
链接地址: http://www.djcxy.com/p/2455.html下一篇: Why does changing 0.1f to 0 slow down performance by 10x?