Difference between HashMap, LinkedHashMap and TreeMap
What is the difference between HashMap
, LinkedHashMap
and TreeMap
in Java? I don't see any difference in the output as all the three has keySet
and values
. What are Hashtable
s?
Map m1 = new HashMap();
m1.put("map", "HashMap");
m1.put("schildt", "java2");
m1.put("mathew", "Hyden");
m1.put("schildt", "java2s");
print(m1.keySet());
print(m1.values());
SortedMap sm = new TreeMap();
sm.put("map", "TreeMap");
sm.put("schildt", "java2");
sm.put("mathew", "Hyden");
sm.put("schildt", "java2s");
print(sm.keySet());
print(sm.values());
LinkedHashMap lm = new LinkedHashMap();
lm.put("map", "LinkedHashMap");
lm.put("schildt", "java2");
lm.put("mathew", "Hyden");
lm.put("schildt", "java2s");
print(lm.keySet());
print(lm.values());
All three classes implement the Map
interface and offer mostly the same functionality. The most important difference is the order in which iteration through the entries will happen:
HashMap
makes absolutely no guarantees about the iteration order. It can (and will) even change completely when new elements are added. TreeMap
will iterate according to the "natural ordering" of the keys according to their compareTo()
method (or an externally supplied Comparator
). Additionally, it implements the SortedMap
interface, which contains methods that depend on this sort order. LinkedHashMap
will iterate in the order in which the entries were put into the map "Hashtable" is the generic name for hash-based maps. In the context of the Java API, Hashtable
is an obsolete class from the days of Java 1.1 before the collections framework existed. It should not be used anymore, because its API is cluttered with obsolete methods that duplicate functionality, and its methods are synchronized (which can decrease performance and is generally useless). Use ConcurrentHashMap instead of Hashtable.
我更喜欢视觉呈现:
╔══════════════╦═════════════════════╦═══════════════════╦═════════════════════╗
║ Property ║ HashMap ║ TreeMap ║ LinkedHashMap ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║ Iteration ║ no guarantee order ║ sorted according ║ ║
║ Order ║ will remain constant║ to the natural ║ insertion-order ║
║ ║ over time ║ ordering ║ ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║ Get/put ║ ║ ║ ║
║ remove ║ O(1) ║ O(log(n)) ║ O(1) ║
║ containsKey ║ ║ ║ ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║ ║ ║ NavigableMap ║ ║
║ Interfaces ║ Map ║ Map ║ Map ║
║ ║ ║ SortedMap ║ ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║ ║ ║ ║ ║
║ Null ║ allowed ║ only values ║ allowed ║
║ values/keys ║ ║ ║ ║
╠══════════════╬═════════════════════╩═══════════════════╩═════════════════════╣
║ ║ Fail-fast behavior of an iterator cannot be guaranteed ║
║ Fail-fast ║ impossible to make any hard guarantees in the presence of ║
║ behavior ║ unsynchronized concurrent modification ║
╠══════════════╬═════════════════════╦═══════════════════╦═════════════════════╣
║ ║ ║ ║ ║
║Implementation║ buckets ║ Red-Black Tree ║ double-linked ║
║ ║ ║ ║ buckets ║
╠══════════════╬═════════════════════╩═══════════════════╩═════════════════════╣
║ Is ║ ║
║ synchronized ║ implementation is not synchronized ║
╚══════════════╩═══════════════════════════════════════════════════════════════╝
All three represent mapping from unique keys to values, and therefore implement the Map interface.
HashMap is a map based on hashing of the keys. It supports O(1) get/put operations. Keys must have consistent implementations of hashCode()
and equals()
for this to work.
LinkedHashMap is very similar to HashMap, but it adds awareness to the order at which items are added (or accessed), so the iteration order is the same as insertion order (or access order, depending on construction parameters).
TreeMap is a tree based mapping. Its put/get operations take O(log n) time. It requires items to have some comparison mechanism, either with Comparable or Comparator. The iteration order is determined by this mechanism.