What are the options for storing hierarchical data in a relational database?
Good Overviews
Generally speaking, you're making a decision between fast read times (for example, nested set) or fast write times (adjacency list). Usually, you end up with a combination of the options below that best fit your needs. The following provides some in-depth reading:
Options
Ones I am aware of and general features:
LEFT(lineage, #) = '/enumerated/path'
) Database Specific Notes
MySQL
Oracle
PostgreSQL
SQL Server
My favorite answer is as what the first sentence in this thread suggested. Use an Adjacency List to maintain the hierarchy and use Nested Sets to query the hierarchy.
The problem up until now has been that the coversion method from an Adjacecy List to Nested Sets has been frightfully slow because most people use the extreme RBAR method known as a "Push Stack" to do the conversion and has been considered to be way to expensive to reach the Nirvana of the simplicity of maintenance by the Adjacency List and the awesome performance of Nested Sets. As a result, most people end up having to settle for one or the other especially if there are more than, say, a lousy 100,000 nodes or so. Using the push stack method can take a whole day to do the conversion on what MLM'ers would consider to be a small million node hierarchy.
I thought I'd give Celko a bit of competition by coming up with a method to convert an Adjacency List to Nested sets at speeds that just seem impossible. Here's the performance of the push stack method on my i5 laptop.
Duration for 1,000 Nodes = 00:00:00:870
Duration for 10,000 Nodes = 00:01:01:783 (70 times slower instead of just 10)
Duration for 100,000 Nodes = 00:49:59:730 (3,446 times slower instead of just 100)
Duration for 1,000,000 Nodes = 'Didn't even try this'
And here's the duration for the new method (with the push stack method in parenthesis).
Duration for 1,000 Nodes = 00:00:00:053 (compared to 00:00:00:870)
Duration for 10,000 Nodes = 00:00:00:323 (compared to 00:01:01:783)
Duration for 100,000 Nodes = 00:00:03:867 (compared to 00:49:59:730)
Duration for 1,000,000 Nodes = 00:00:54:283 (compared to something like 2 days!!!)
Yes, that's correct. 1 million nodes converted in less than a minute and 100,000 nodes in under 4 seconds.
You can read about the new method and get a copy of the code at the following URL. http://www.sqlservercentral.com/articles/Hierarchy/94040/
I also developed a "pre-aggregated" hierarchy using similar methods. MLM'ers and people making bills of materials will be particularly interested in this article. http://www.sqlservercentral.com/articles/T-SQL/94570/
If you do stop by to take a look at either article, jump into the "Join the discussion" link and let me know what you think.
This is a very partial answer to your question, but I hope still useful.
Microsoft SQL Server 2008 implements two features that are extremely useful for managing hierarchical data:
Have a look at "Model Your Data Hierarchies With SQL Server 2008" by Kent Tegels on MSDN for starts. See also my own question: Recursive same-table query in SQL Server 2008
This design was not mentioned yet:
Multiple lineage columns
Though it has limitations, if you can bear them, it's very simple and very efficient. Features:
Here follows an example - taxonomic tree of birds so the hierarchy is Class/Order/Family/Genus/Species - species is the lowest level, 1 row = 1 taxon (which corresponds to species in the case of the leaf nodes):
CREATE TABLE `taxons` (
`TaxonId` smallint(6) NOT NULL default '0',
`ClassId` smallint(6) default NULL,
`OrderId` smallint(6) default NULL,
`FamilyId` smallint(6) default NULL,
`GenusId` smallint(6) default NULL,
`Name` varchar(150) NOT NULL default ''
);
and the example of the data:
+---------+---------+---------+----------+---------+-------------------------------+
| TaxonId | ClassId | OrderId | FamilyId | GenusId | Name |
+---------+---------+---------+----------+---------+-------------------------------+
| 254 | 0 | 0 | 0 | 0 | Aves |
| 255 | 254 | 0 | 0 | 0 | Gaviiformes |
| 256 | 254 | 255 | 0 | 0 | Gaviidae |
| 257 | 254 | 255 | 256 | 0 | Gavia |
| 258 | 254 | 255 | 256 | 257 | Gavia stellata |
| 259 | 254 | 255 | 256 | 257 | Gavia arctica |
| 260 | 254 | 255 | 256 | 257 | Gavia immer |
| 261 | 254 | 255 | 256 | 257 | Gavia adamsii |
| 262 | 254 | 0 | 0 | 0 | Podicipediformes |
| 263 | 254 | 262 | 0 | 0 | Podicipedidae |
| 264 | 254 | 262 | 263 | 0 | Tachybaptus |
This is great because this way you accomplish all the needed operations in a very easy way, as long as the internal categories don't change their level in the tree.
链接地址: http://www.djcxy.com/p/2736.html上一篇: 如何防止SQL注入,PHP
下一篇: 在关系数据库中存储分层数据有哪些选项?