How to efficiently build a tree from a flat structure?

I have a bunch of objects in a flat structure. These objects have an ID and a ParentID property so they can be arranged in trees. They are in no particular order. Each ParentID property does not necessarily matches with an ID in the structure. Therefore their could be several trees emerging from these objects.

How would you process these objects to create the resulting trees ?

I'm not so far from a solution but I'm sure it is far from optimal...

I need to create these trees to then insert Data into a database, in proper order.

There are no circular references. A Node is a RootNode when ParentID == null or when ParentID can't be found in the other objects


Store IDs of the objects in a hash table mapping to the specific object. Enumerate through all the objects and find their parent if it exists and update its parent pointer accordingly.

class MyObject
{ // The actual object
    public int ParentID { get; set; }
    public int ID { get; set; }
}

class Node
{
    public List<Node> Children = new List<Node>();
    public Node Parent { get; set; }
    public MyObject AssociatedObject { get; set; }
}

IEnumerable<Node> BuildTreeAndGetRoots(List<MyObject> actualObjects)
{
    Dictionary<int, Node> lookup = new Dictionary<int, Node>();
    actualObjects.ForEach(x => lookup.Add(x.ID, new Node { AssociatedObject = x }));
    foreach (var item in lookup.Values) {
        Node proposedParent;
        if (lookup.TryGetValue(item.AssociatedObject.ParentID, out proposedParent)) {
            item.Parent = proposedParent;
            proposedParent.Children.Add(item);
        }
    }
    return lookup.Values.Where(x => x.Parent == null);
}

Based on the answer of Mehrdad Afshari and the comment of Andrew Hanlon for a speedup, here is my take.

Important difference to the original task: A root node has ID==parentID.

class MyObject
{   // The actual object
    public int ParentID { get; set; }
    public int ID { get; set; }
}

class Node
{
    public List<Node> Children = new List<Node>();
    public Node Parent { get; set; }
    public MyObject Source { get; set; }
}

List<Node> BuildTreeAndGetRoots(List<MyObject> actualObjects)
{
    var lookup = new Dictionary<int, Node>();
    var rootNodes = new List<Node>();

    foreach (var item in actualObjects)
    {
        // add us to lookup
        Node ourNode;
        if (lookup.TryGetValue(item.ID, out ourNode))
        {   // was already found as a parent - register the actual object
            ourNode.Source = item;
        }
        else
        {
            ourNode = new Node() { Source = item };
            lookup.Add(item.ID, ourNode);
        }

        // hook into parent
        if (item.ParentID == item.ID)
        {   // is a root node
            rootNodes.Add(ourNode);
        }
        else
        {   // is a child row - so we have a parent
            Node parentNode;
            if (!lookup.TryGetValue(item.ParentID, out parentNode))
            {   // unknown parent, construct preliminary parent
                parentNode = new Node();
                lookup.Add(item.ParentID, parentNode);
            }
            parentNode.Children.Add(ourNode);
            ourNode.Parent = parentNode;
        }
    }

    return rootNodes;
}

下面是一个简单的JavaScript算法,用于将平坦表分析为运行时间为N的父/子树结构:

var table = [
    {parent_id: 0, id: 1, children: []},
    {parent_id: 0, id: 2, children: []},
    {parent_id: 0, id: 3, children: []},
    {parent_id: 1, id: 4, children: []},
    {parent_id: 1, id: 5, children: []},
    {parent_id: 1, id: 6, children: []},
    {parent_id: 2, id: 7, children: []},
    {parent_id: 7, id: 8, children: []},
    {parent_id: 8, id: 9, children: []},
    {parent_id: 3, id: 10, children: []}
];

var root = {id:0, parent_id: null, children: []};
var node_list = { 0 : root};

for (var i = 0; i < table.length; i++) {
    node_list[table[i].id] = table[i];
    node_list[table[i].parent_id].children.push(node_list[table[i].id]);
}

console.log(root);
链接地址: http://www.djcxy.com/p/30460.html

上一篇: SQL在树中查找所有直接后代

下一篇: 如何从平面结构高效地构建树?