Finding appropriate formula for non
I am trying to calculate a non-linear regression for my data in R. I am having trouble finding an appropriate formula and parameter values.
My data looks like this:
I have been using the nls and nlrq functions, which I believe to be suitable, but I think the formulas I specify are not appropriate. I have tried the exponential decay function y ~ ab^x
and y ~ c + a*b^x
, but the resulting regression lines do not look right at all.
Unfortunately I do not know which formula would be appropriate. I have gone through some tutorials for fitting non-linear regression but they all started with an initial formula that seemed appropriate for their dataset. Guidance here would be most welcome, especially if someone can recommend a formula to start with.
A subset of the data:
GENE Mean_score Snps_per_gene
X1 0.1 3
X2 0.1466666667 30
X3 0.1375 8
X4 0.24 5
X5 0.2625 8
X6 0.2 1
X7 0.1466666667 15
X8 0.2 1
X9 0.1666666667 9
X10 0.1 1
X11 0.1928571429 14
X12 0.1 2
X13 0.1545454545 11
X14 0.1333333333 3
X15 0.1666666667 3
X16 0.2117647059 34
X17 0.1452380952 42
X18 0.16 5
X19 0.2 1
X20 0.25 2
X21 0.125 4
X22 0.2 13
X23 0.1714285714 7
X24 0.15 6
X25 0.2 3
X26 0.2894736842 19
X27 0.2352941176 17
X28 0.1333333333 6
X29 0.12 5
X30 0.2 3
X31 0.1 1
X32 0.1571428571 7
X33 0.2125 8
X34 0.18125 16
X35 0.26 10
X36 0.1368421053 19
X37 0.1333333333 6
X38 0.15 2
X39 0.14 5
X40 0.18 15
X41 0.14 5
X42 0.3 1
X43 0.1 2
X44 0.1 6
X45 0.1 4
X46 0.1 1
X47 0.1333333333 3
X48 0.1166666667 6
X49 0.225 4
X50 0.2 15
X51 0.125 12
X52 0.1 3
X53 0.1714285714 14
X54 0.175 4
X55 0.3404761905 42
X56 0.1 1
X57 0.25 2
X58 0.15 4
X59 0.1 1
X60 0.1666666667 3
X61 0.3 2
X62 0.225 4
X63 0.3076923077 13
X64 0.1 1
X65 0.1666666667 3
X66 0.1666666667 6
X67 0.1 3
X68 0.1 3
X69 0.1166666667 6
X70 0.125 8
X71 0.2 1
X72 0.2 2
X73 0.1333333333 42
X74 0.1 1
X75 0.2 8
X76 0.1444444444 9
X77 0.1666666667 15
X78 0.1 2
X79 0.176744186 43
X80 0.1275 40
X81 0.1666666667 3
X82 0.125 4
X83 0.2545454545 11
X84 0.1304347826 46
X85 0.21 10
X86 0.1571428571 7
X87 0.3 9
X88 0.275 16
X89 0.11 10
X90 0.1333333333 6
X91 0.2333333333 3
X92 0.2 2
X93 0.2866666667 15
X94 0.25 2
X95 0.1125 8
X96 0.4 11
X97 0.1 1
X98 0.2 2
X99 0.15 2
X100 0.1625 8
X101 0.24 5
X102 0.175 4
X103 0.15 4
X104 0.1333333333 3
X105 0.4 2
X106 0.2 3
X107 0.25 2
X108 0.32 5
X109 0.2333333333 3
X110 0.1714285714 7
X111 0.2 1
X112 0.225 4
X113 0.2 1
X114 0.1714285714 7
X115 0.15 2
X116 0.1166666667 6
X117 0.16875 16
X118 0.1555555556 9
X119 0.15 6
X120 0.12 5
X121 0.1 1
X122 0.1333333333 6
X123 0.2333333333 3
X124 0.1 1
X125 0.2333333333 3
X126 0.1333333333 3
X127 0.1 1
X128 0.1827586207 29
X129 0.25 8
X130 0.2 7
X131 0.25 6
X132 0.1 1
X133 0.125 4
X134 0.2 1
X135 0.1666666667 3
X136 0.1 3
X137 0.12 5
X138 0.1 1
X139 0.175 4
X140 0.1 1
X141 0.1666666667 3
X142 0.1666666667 3
X143 0.1 1
X144 0.1375 8
X145 0.1 9
X146 0.1 2
X147 0.125 4
X148 0.1333333333 3
X149 0.1769230769 13
X150 0.15 2
X151 0.1214285714 14
X152 0.1 1
X153 0.2555555556 18
X154 0.2 1
X155 0.1 1
X156 0.1 1
X157 0.1 1
X158 0.4 1
X159 0.14 5
X160 0.1 2
X161 0.1333333333 3
X162 0.375 8
X163 0.2263157895 19
X164 0.1636363636 11
X165 0.3 1
X166 0.1 3
X167 0.2 1
X168 0.3 1
X169 0.1428571429 7
X170 0.1 2
X171 0.1222222222 9
X172 0.1 8
X173 0.1 5
X174 0.1 8
X175 0.1666666667 3
X176 0.2 5
X177 0.1 4
X178 0.1166666667 6
X179 0.15 2
X180 0.3666666667 3
X181 0.25 4
X182 0.1 1
X183 0.1 2
X184 0.1 1
X185 0.1 1
X186 0.1 1
X187 0.184 25
X188 0.2333333333 3
X189 0.2333333333 3
X190 0.1 2
X191 0.32 5
X192 0.1 2
X193 0.12 5
X194 0.1 5
X195 0.2 1
X196 0.1 6
X197 0.1 2
X198 0.4 1
X199 0.2 2
X200 0.1 2
X201 0.2 1
X202 0.2333333333 6
X203 0.35 2
X204 0.1 1
X205 0.12 5
X206 0.14 5
X207 0.125 4
X208 0.3333333333 3
X209 0.1 2
X210 0.1 3
X211 0.1 1
X212 0.2 4
X213 0.15 8
X214 0.125 4
X215 0.1548387097 31
X216 0.2 7
X217 0.225 4
X218 0.125 4
X219 0.15 2
X220 0.4 1
X221 0.275 4
X222 0.325 4
X223 0.2 3
X224 0.175 4
X225 0.3 1
X226 0.1 1
X227 0.19 10
X228 0.25 4
X229 0.2666666667 9
X230 0.1 1
X231 0.2 1
X232 0.3 1
X233 0.2166666667 6
X234 0.26 5
X235 0.225 4
X236 0.1 1
X237 0.1857142857 7
X238 0.58 5
X239 0.25 10
X240 0.6066666667 15
X241 0.3 1
X242 0.5 2
X243 0.2333333333 3
X244 0.25 2
X245 0.1 4
X246 0.1 1
X247 0.1714285714 7
X248 0.16875 16
X249 0.2 1
X250 0.4 3
X251 0.1 1
X252 0.1666666667 6
X253 0.2 6
X254 0.3166666667 12
X255 0.1 1
X256 0.1 2
X257 0.4 1
X258 0.1333333333 3
X259 0.225 4
X260 0.2571428571 7
X261 0.4 5
X262 0.15 10
X263 0.1571428571 7
X264 0.2 11
X265 0.2285714286 7
X266 0.15 4
X267 0.3 1
X268 0.1384615385 13
X269 0.1 4
X270 0.1 1
X271 0.16 5
X272 0.1285714286 7
X273 0.1 1
X274 0.2222222222 9
X275 0.2083333333 12
X276 0.2153846154 13
X277 0.1888888889 9
X278 0.1 1
X279 0.1 2
X280 0.3 2
X281 0.17 10
X282 0.1 5
X283 0.2833333333 6
X284 0.1333333333 6
X285 0.1833333333 6
X286 0.1833333333 12
X287 0.1953488372 43
X288 0.2526315789 19
X289 0.1 1
X290 0.125 4
X291 0.26 5
X292 0.1 2
X293 0.2578947368 19
X294 0.2545454545 11
X295 0.1 1
X296 0.3666666667 3
X297 0.1714285714 7
X298 0.1833333333 6
X299 0.16 5
X300 0.2733333333 15
X301 0.275 4
X302 0.1 1
X303 0.2 7
X304 0.1583333333 12
X305 0.1666666667 3
X306 0.1 1
X307 0.1 6
X308 0.1642857143 14
X309 0.1 1
X310 0.1606060606 33
X311 0.1428571429 7
X312 0.1888888889 9
X313 0.2 2
X314 0.1388888889 18
X315 0.35 2
X316 0.3 2
X317 0.1 4
X318 0.15 16
X319 0.1166666667 12
X320 0.1888888889 9
X321 0.16 5
X322 0.2333333333 3
X323 0.1857142857 14
X324 0.31 20
X325 0.2 1
X326 0.1 1
X327 0.1952380952 21
X328 0.215625 32
X329 0.1 1
X330 0.1 1
X331 0.1307692308 13
X332 0.1 4
X333 0.1666666667 3
X334 0.2 14
X335 0.1583333333 12
X336 0.1961538462 26
X337 0.2222222222 9
X338 0.1 3
X339 0.1 2
X340 0.1285714286 14
X341 0.175 4
X342 0.125 4
X343 0.1 4
X344 0.1428571429 7
X345 0.1 4
X346 0.1 2
X347 0.15 2
X348 0.25 4
X349 0.22 5
X350 0.1 2
X351 0.1 3
X352 0.14 10
X353 0.1666666667 18
X354 0.1333333333 3
X355 0.2 3
X356 0.16 5
X357 0.3 1
X358 0.175 4
X359 0.5 1
X360 0.1111111111 9
X361 0.2333333333 6
X362 0.175 4
X363 0.227027027 37
X364 0.3857142857 7
X365 0.1 2
X366 0.2 3
X367 0.1916666667 12
X368 0.1428571429 14
X369 0.2666666667 3
X370 0.2 9
X371 0.25 2
X372 0.2 1
X373 0.1 2
X374 0.225 4
X375 0.1 1
X376 0.1 3
X377 0.3 2
X378 0.1 1
X379 0.1545454545 11
X380 0.1730769231 52
X381 0.1 3
X382 0.1333333333 3
X383 0.1814814815 27
X384 0.108 25
X385 0.2666666667 6
X386 0.1666666667 3
X387 0.25 8
X388 0.225 4
X389 0.24 25
X390 0.2666666667 6
X391 0.1 2
X392 0.15 4
X393 0.1666666667 6
X394 0.1 1
X395 0.2375 8
X396 0.125 4
X397 0.1 7
X398 0.1 7
X399 0.1 4
X400 0.1 2
X401 0.1625 8
X402 0.3 1
X403 0.3 2
X404 0.25 4
X405 0.2 1
X406 0.1285714286 7
X407 0.15 8
X408 0.5 1
X409 0.1 1
X410 0.1285714286 7
X411 0.1 1
X412 0.2166666667 30
X413 0.22 5
X414 0.2714285714 14
X415 0.1214285714 14
X416 0.2 8
X417 0.28 5
X418 0.24 35
X419 0.15 4
X420 0.1333333333 12
X421 0.125 4
X422 0.1 1
X423 0.1666666667 3
X424 0.2111111111 9
X425 0.3 4
X426 0.2 2
X427 0.2 3
X428 0.1 1
X429 0.1 1
X430 0.1617021277 47
X431 0.15 8
X432 0.1142857143 14
X433 0.15 4
X434 0.1384615385 13
X435 0.1 2
X436 0.1166666667 12
X437 0.1714285714 14
X438 0.2416666667 12
X439 0.1 1
X440 0.1428571429 7
X441 0.1 1
X442 0.1416666667 12
X443 0.3333333333 6
X444 0.2 1
X445 0.14 5
X446 0.2 3
X447 0.225 28
X448 0.1571428571 14
X449 0.1 1
X450 0.1583333333 12
X451 0.1518518519 27
X452 0.1363636364 11
X453 0.2 1
X454 0.1666666667 6
X455 0.1 1
X456 0.1333333333 3
X457 0.2368421053 19
X458 0.1222222222 9
X459 0.15 2
X460 0.2 1
X461 0.1625 24
X462 0.2 6
X463 0.1666666667 3
X464 0.1 3
X465 0.3 8
X466 0.1523809524 21
X467 0.1 3
X468 0.1 3
X469 0.15 4
X470 0.1 1
X471 0.1642857143 28
X472 0.1 5
X473 0.1 2
X474 0.12 15
X475 0.1 3
X476 0.1090909091 11
X477 0.1346153846 26
X478 0.125 4
X479 0.1444444444 9
X480 0.2 1
X481 0.1 1
X482 0.1 3
X483 0.2 3
X484 0.1375 8
X485 0.1 4
X486 0.12 5
X487 0.1739130435 23
X488 0.25 2
X489 0.1333333333 6
X490 0.3 1
X491 0.225 20
X492 0.175 4
X493 0.1 3
X494 0.1222222222 9
X495 0.1 1
X496 0.175 4
X497 0.2333333333 6
X498 0.1615384615 13
X499 0.15 8
X500 0.1666666667 6
X501 0.2 2
X502 0.1777777778 9
X503 0.15 4
X504 0.2666666667 3
X505 0.1 4
X506 0.1222222222 9
X507 0.15 2
X508 0.2 3
X509 0.1333333333 15
X510 0.14 5
X511 0.1 1
X512 0.4 1
X513 0.2125 8
X514 0.36 5
X515 0.34 5
X516 0.4 1
X517 0.1428571429 7
X518 0.3333333333 3
X519 0.1 3
X520 0.2277777778 18
X521 0.1916666667 12
X522 0.2 4
X523 0.1857142857 7
X524 0.1 2
X525 0.1 5
X526 0.2222222222 9
X527 0.1818181818 11
X528 0.2151515152 33
X529 0.1 3
X530 0.1214285714 14
X531 0.2 1
X532 0.1 2
X533 0.1 3
X534 0.1166666667 12
X535 0.1 2
X536 0.1 2
X537 0.1 1
X538 0.2379310345 29
X539 0.175 4
X540 0.1363636364 11
X541 0.1 1
X542 0.1479166667 48
X543 0.1928571429 28
X544 0.4 1
X545 0.1951219512 41
X546 0.1333333333 3
X547 0.15 4
X548 0.2833333333 6
X549 0.1547619048 42
X550 0.1555555556 9
X551 0.2363636364 11
X552 0.2142857143 7
X553 0.5 1
X554 0.15 4
X555 0.1709677419 31
X556 0.17 10
X557 0.1 2
X558 0.2866666667 15
X559 0.4 2
X560 0.15 2
X561 0.1424242424 66
X562 0.25 2
X563 0.1 3
X564 0.1285714286 7
X565 0.12 5
X566 0.25 4
X567 0.2263157895 19
X568 0.1 12
X569 0.1666666667 6
X570 0.5 1
X571 0.147826087 23
X572 0.1 1
X573 0.1818181818 11
X574 0.2 2
X575 0.15 2
X576 0.2 3
X577 0.16 15
X578 0.1621621622 37
X579 0.1333333333 3
X580 0.1333333333 12
X581 0.18 5
X582 0.1534482759 58
X583 0.1538461538 26
X584 0.1 9
X585 0.2142857143 7
X586 0.1 1
X587 0.1222222222 9
X588 0.1 1
X589 0.1 3
X590 0.1 6
X591 0.15 2
X592 0.1 2
X593 0.3 1
X594 0.1285714286 21
X595 0.2 2
X596 0.12 5
X597 0.1 1
X598 0.1 1
X599 0.1 2
X600 0.1153846154 13
X601 0.1 15
X602 0.1 1
X603 0.1 1
X604 0.1 4
X605 0.15 10
X606 0.15 4
X607 0.15 4
X608 0.2 1
X609 0.14 5
X610 0.2 1
X611 0.1 2
X612 0.1 3
X613 0.125 4
X614 0.172 25
X615 0.2 4
X616 0.1727272727 11
X617 0.2090909091 22
X618 0.1333333333 3
X619 0.1 7
X620 0.15 4
X621 0.1181818182 11
X622 0.1375 8
X623 0.1666666667 3
X624 0.1 3
X625 0.1090909091 11
X626 0.125 8
X627 0.1 2
X628 0.12 5
X629 0.1 8
X630 0.13 40
X631 0.1666666667 3
X632 0.34 5
X633 0.1714285714 7
X634 0.1636363636 11
X635 0.1 1
X636 0.1 1
X637 0.18125 16
X638 0.2 4
X639 0.2 8
X640 0.1 2
X641 0.1 1
X642 0.1166666667 6
X643 0.2 1
X644 0.6 1
X645 0.2666666667 9
X646 0.2666666667 3
X647 0.2 2
X648 0.1 2
X649 0.1 1
X650 0.1 2
X651 0.1 1
X652 0.125 4
X653 0.15 2
X654 0.1 1
X655 0.1 1
X656 0.35 4
X657 0.2666666667 3
X658 0.1 2
X659 0.1 1
X660 0.2 1
X661 0.1 2
X662 0.1 2
X663 0.1333333333 3
X664 0.1 2
X665 0.1 1
X666 0.225 4
X667 0.1666666667 6
X668 0.1 2
X669 0.1 3
X670 0.175 4
X671 0.1 3
X672 0.15 4
X673 0.1666666667 3
X674 0.1 3
X675 0.175 4
X676 0.25 8
X677 0.25 4
X678 0.2571428571 7
X679 0.1 1
X680 0.2571428571 7
X681 0.208 25
X682 0.325 12
X683 0.1 1
X684 0.25 2
X685 0.1 2
X686 0.3047619048 21
X687 0.24 5
X688 0.15 6
X689 0.1333333333 6
X690 0.3 1
X691 0.1 1
X692 0.15 2
X693 0.23 20
X694 0.2 2
X695 0.1666666667 6
X696 0.1342857143 35
X697 0.25 6
X698 0.2 8
X699 0.2 5
X700 0.5 1
X701 0.1333333333 6
X702 0.3 1
X703 0.15 2
X704 0.15 2
X705 0.1833333333 6
X706 0.15 6
X707 0.1493506494 77
X708 0.36 5
X709 0.3 2
X710 0.15 2
X711 0.38 5
X712 0.2666666667 3
X713 0.25 4
X714 0.225 4
X715 0.5 1
X716 0.1 2
X717 0.16 5
X718 0.3 2
X719 0.3538461538 13
X720 0.1 2
X721 0.175 4
X722 0.22 5
X723 0.175 4
X724 0.2333333333 6
X725 0.34 5
X726 0.2 7
X727 0.1 1
X728 0.3 3
X729 0.1 1
X730 0.1 3
X731 0.3 5
X732 0.35 6
X733 0.2875 8
X734 0.1 1
X735 0.1 2
X736 0.2 5
X737 0.1714285714 7
X738 0.375 4
X739 0.1 4
X740 0.3 1
X741 0.1 1
X742 0.1142857143 7
X743 0.1 1
X744 0.2285714286 7
X745 0.14 5
X746 0.15 6
X747 0.1 1
X748 0.125 4
X749 0.1666666667 6
X750 0.125 8
X751 0.1 1
X752 0.15 2
X753 0.2 1
X754 0.225 4
X755 0.3 1
X756 0.3 5
X757 0.175 4
X758 0.1 3
X759 0.1333333333 18
X760 0.1230769231 13
X761 0.2 1
X762 0.11 10
X763 0.1666666667 6
X764 0.1 1
X765 0.2090909091 11
X766 0.145 20
X767 0.14 5
X768 0.2375 8
X769 0.1571428571 7
X770 0.1 1
X771 0.1 2
X772 0.2 2
X773 0.16 5
X774 0.2 1
X775 0.1777777778 9
X776 0.1210526316 19
X777 0.2 1
X778 0.225 12
X779 0.1666666667 3
X780 0.1 6
X781 0.2333333333 6
X782 0.1692307692 13
X783 0.19 10
X784 0.2 3
X785 0.1489361702 47
X786 0.2 5
X787 0.45 2
X788 0.1666666667 6
X789 0.18 5
X790 0.3 1
X791 0.2 2
X792 0.11 10
X793 0.3333333333 3
X794 0.25 2
X795 0.2 1
X796 0.25 2
X797 0.2 2
X798 0.2 1
X799 0.1 3
X800 0.1333333333 18
X801 0.1473684211 19
X802 0.2 5
X803 0.14 5
X804 0.125 4
X805 0.1583333333 12
X806 0.1857142857 7
X807 0.1 1
X808 0.2 1
X809 0.1769230769 26
X810 0.1 1
X811 0.1 2
X812 0.1833333333 6
X813 0.1409090909 22
X814 0.1416666667 24
X815 0.1307692308 13
X816 0.1235294118 17
X817 0.1 1
X818 0.1 1
X819 0.18 30
X820 0.2514285714 35
X821 0.18 5
X822 0.2 4
X823 0.1 1
X824 0.2333333333 9
X825 0.1222222222 9
X826 0.15 2
X827 0.14 5
X828 0.1588235294 51
X829 0.15 2
X830 0.2 4
X831 0.1 2
X832 0.1391304348 23
X833 0.18 20
X834 0.15 2
X835 0.3 1
X836 0.1 8
X837 0.1666666667 9
X838 0.1954545455 22
X839 0.225 16
X840 0.1222222222 9
X841 0.1210526316 19
X842 0.1 2
X843 0.1 2
X844 0.125 4
X845 0.1 4
X846 0.1 1
X847 0.2 2
X848 0.275 4
X849 0.1 3
X850 0.2833333333 6
X851 0.175 4
X852 0.32 5
X853 0.1 1
X854 0.1428571429 7
X855 0.2277777778 18
X856 0.15 8
X857 0.12 5
X858 0.1 2
X859 0.175 4
X860 0.18 5
X861 0.16 5
X862 0.2333333333 6
X863 0.1 1
X864 0.3333333333 3
X865 0.1 2
X866 0.15 12
X867 0.1636363636 11
X868 0.4 1
X869 0.4 1
X870 0.1 3
X871 0.1555555556 9
X872 0.2 1
X873 0.3 1
X874 0.2 2
X875 0.15 12
X876 0.1 1
X877 0.1181818182 11
X878 0.1428571429 7
X879 0.1461538462 13
X880 0.3076923077 13
X881 0.2 2
X882 0.3 1
X883 0.205 20
X884 0.2 5
X885 0.1333333333 3
X886 0.15 2
X887 0.25 2
X888 0.15 4
X889 0.3 1
X890 0.125 4
X891 0.1875 8
X892 0.1428571429 7
X893 0.2333333333 3
X894 0.1 2
X895 0.1 1
X896 0.35 6
X897 0.1444444444 9
X898 0.2 2
X899 0.3 1
X900 0.1 2
X901 0.1 1
X902 0.25 2
X903 0.1 1
X904 0.1 1
X905 0.7 1
X906 0.2 1
X907 0.45 4
X908 0.25 2
X909 0.15 4
X910 0.1 2
X911 0.4 13
X912 0.1 2
X913 0.1842105263 19
X914 0.1 1
X915 0.1333333333 3
X916 0.2 2
X917 0.1 7
X918 0.1 1
X919 0.225 4
X920 0.2 1
X921 0.2 3
X922 0.18 5
X923 0.1 1
X924 0.1875 8
X925 0.2833333333 6
X926 0.5 3
X927 0.2 1
X928 0.1 1
X929 0.1 2
X930 0.2 3
X931 0.4 1
X932 0.2875 16
X933 0.1857142857 7
X934 0.1 1
X935 0.2 2
X936 0.1 1
X937 0.2 13
X938 0.2444444444 9
X939 0.1 1
X940 0.1714285714 7
X941 0.3 1
X942 0.1 1
X943 0.2857142857 7
X944 0.15 2
X945 0.1 1
X946 0.15625 16
X947 0.1666666667 3
X948 0.3 1
X949 0.2 2
X950 0.1 8
X951 0.1 1
X952 0.1 3
X953 0.3 1
X954 0.3 1
X955 0.1 3
X956 0.1125 8
X957 0.18 5
X958 0.2666666667 3
X959 0.2 1
X960 0.125 4
X961 0.1333333333 3
X962 0.2444444444 9
X963 0.25 10
X964 0.25 4
X965 0.2 1
X966 0.225 4
X967 0.1625 8
X968 0.1333333333 3
X969 0.1333333333 3
X970 0.1 1
X971 0.2 7
X972 0.3 10
X973 0.1 1
X974 0.3 2
X975 0.225 4
X976 0.1 1
X977 0.1 2
X978 0.4 1
X979 0.1333333333 3
X980 0.1333333333 9
X981 0.13125 16
X982 0.1 1
X983 0.2 1
X984 0.1782608696 23
X985 0.2225806452 31
X986 0.15 4
X987 0.1 3
X988 0.1 3
X989 0.15 4
X990 0.2285714286 14
X991 0.2384615385 26
X992 0.4 1
X993 0.4 2
X994 0.1 1
X995 0.1 1
X996 0.1666666667 3
X997 0.1 6
X998 0.13 20
X999 0.2666666667 3
When I use y ~ c + a*b^x
with the following implementation:
#try to fit the model
fit_regression <-nlrq(Data$mean_score ~ c + a*b^Data$Snps_per_gene, data=Data, start=list(a=0.1,b=0.5, c=1))
#plot regression
lines(Data$Snps_per_gene, predict(fit_regression, newdata=Data$Snps_per_gene), lty=2, col = "red")
It looks like this:
I haven't figured out why it appears to plot multiple lines.
Thanks in advance for your assistance.
Based on feedback I tried plotting the regression using this code:
#first the data is sorted
Data <- Data[order(Snps_per_gene),]
pframe <- data.frame(total=seq(0,8000,length=21811))
pframe$val <- predict(fitquant, newdata=pframe)
with(pframe,lines(total, val, lty=2, col = "red"))
The result is:
This looks like a an actual regression line, but the slope of the curve suggests to me that the formula or parameters are maybe not appropriate for the data.
For plotting the results, you want something like
pframe <- data.frame(total=seq(0,8000,length=201))
pframe$val <- predict(fitquant, newdata=pframe)
with(pframe,lines(total, val, lty=2, col = "red")
If you just predict with the original values, the line will go back and forth because they're out of order. You could just sort them, but you probably don't need a prediction for every value if all you want to do is draw a smooth line ...
I did a little bit more exploration with the subset data you give above. I used ggplot
with various nonparametric regression options (generalized additive model on the left, loess on the right). Based on these plots it doesn't actually look like there's much pattern in the mean ... It also seems based on the pattern of discreteness in the left-hand plot that some of the heteroscedasticity here might be driven by a binomial or quasi-binomial process (eg when there are few SNPs per gene, the proportions often fall at intervals of 0.1, 0.2, ...)
dd <- read.table("SO33312712.dat",header=TRUE)
library(ggplot2); theme_set(theme_bw())
library(viridis)
library(gridExtra) ## for grid.arrange
library(scales) ## for squish
g0 <- ggplot(dd,aes(Snps_per_gene,Mean_score))
g1A <- g0 + stat_sum(alpha=0.5)+scale_size(range=c(3,10))+
geom_smooth(method="gam",formula=y~s(x,k=30))+
geom_vline(xintercept=5,colour="red")
g1B <- g0 +geom_hex()+
scale_fill_viridis()+
geom_smooth()+
scale_y_continuous(limit=c(0.1,0.7),oob=squish)
png("snps.png",width=960,height=480)
grid.arrange(g1A,g1B,nrow=1)
链接地址: http://www.djcxy.com/p/30946.html
上一篇: 使用RODBC从数据框创建表
下一篇: 寻找非适当的公式