Finding appropriate formula for non

I am trying to calculate a non-linear regression for my data in R. I am having trouble finding an appropriate formula and parameter values.

My data looks like this:

在这里输入图像描述

I have been using the nls and nlrq functions, which I believe to be suitable, but I think the formulas I specify are not appropriate. I have tried the exponential decay function y ~ ab^x and y ~ c + a*b^x , but the resulting regression lines do not look right at all.

Unfortunately I do not know which formula would be appropriate. I have gone through some tutorials for fitting non-linear regression but they all started with an initial formula that seemed appropriate for their dataset. Guidance here would be most welcome, especially if someone can recommend a formula to start with.

A subset of the data:

GENE    Mean_score  Snps_per_gene
X1  0.1 3
X2  0.1466666667    30
X3  0.1375  8
X4  0.24    5
X5  0.2625  8
X6  0.2 1
X7  0.1466666667    15
X8  0.2 1
X9  0.1666666667    9
X10 0.1 1
X11 0.1928571429    14
X12 0.1 2
X13 0.1545454545    11
X14 0.1333333333    3
X15 0.1666666667    3
X16 0.2117647059    34
X17 0.1452380952    42
X18 0.16    5
X19 0.2 1
X20 0.25    2
X21 0.125   4
X22 0.2 13
X23 0.1714285714    7
X24 0.15    6
X25 0.2 3
X26 0.2894736842    19
X27 0.2352941176    17
X28 0.1333333333    6
X29 0.12    5
X30 0.2 3
X31 0.1 1
X32 0.1571428571    7
X33 0.2125  8
X34 0.18125 16
X35 0.26    10
X36 0.1368421053    19
X37 0.1333333333    6
X38 0.15    2
X39 0.14    5
X40 0.18    15
X41 0.14    5
X42 0.3 1
X43 0.1 2
X44 0.1 6
X45 0.1 4
X46 0.1 1
X47 0.1333333333    3
X48 0.1166666667    6
X49 0.225   4
X50 0.2 15
X51 0.125   12
X52 0.1 3
X53 0.1714285714    14
X54 0.175   4
X55 0.3404761905    42
X56 0.1 1
X57 0.25    2
X58 0.15    4
X59 0.1 1
X60 0.1666666667    3
X61 0.3 2
X62 0.225   4
X63 0.3076923077    13
X64 0.1 1
X65 0.1666666667    3
X66 0.1666666667    6
X67 0.1 3
X68 0.1 3
X69 0.1166666667    6
X70 0.125   8
X71 0.2 1
X72 0.2 2
X73 0.1333333333    42
X74 0.1 1
X75 0.2 8
X76 0.1444444444    9
X77 0.1666666667    15
X78 0.1 2
X79 0.176744186 43
X80 0.1275  40
X81 0.1666666667    3
X82 0.125   4
X83 0.2545454545    11
X84 0.1304347826    46
X85 0.21    10
X86 0.1571428571    7
X87 0.3 9
X88 0.275   16
X89 0.11    10
X90 0.1333333333    6
X91 0.2333333333    3
X92 0.2 2
X93 0.2866666667    15
X94 0.25    2
X95 0.1125  8
X96 0.4 11
X97 0.1 1
X98 0.2 2
X99 0.15    2
X100    0.1625  8
X101    0.24    5
X102    0.175   4
X103    0.15    4
X104    0.1333333333    3
X105    0.4 2
X106    0.2 3
X107    0.25    2
X108    0.32    5
X109    0.2333333333    3
X110    0.1714285714    7
X111    0.2 1
X112    0.225   4
X113    0.2 1
X114    0.1714285714    7
X115    0.15    2
X116    0.1166666667    6
X117    0.16875 16
X118    0.1555555556    9
X119    0.15    6
X120    0.12    5
X121    0.1 1
X122    0.1333333333    6
X123    0.2333333333    3
X124    0.1 1
X125    0.2333333333    3
X126    0.1333333333    3
X127    0.1 1
X128    0.1827586207    29
X129    0.25    8
X130    0.2 7
X131    0.25    6
X132    0.1 1
X133    0.125   4
X134    0.2 1
X135    0.1666666667    3
X136    0.1 3
X137    0.12    5
X138    0.1 1
X139    0.175   4
X140    0.1 1
X141    0.1666666667    3
X142    0.1666666667    3
X143    0.1 1
X144    0.1375  8
X145    0.1 9
X146    0.1 2
X147    0.125   4
X148    0.1333333333    3
X149    0.1769230769    13
X150    0.15    2
X151    0.1214285714    14
X152    0.1 1
X153    0.2555555556    18
X154    0.2 1
X155    0.1 1
X156    0.1 1
X157    0.1 1
X158    0.4 1
X159    0.14    5
X160    0.1 2
X161    0.1333333333    3
X162    0.375   8
X163    0.2263157895    19
X164    0.1636363636    11
X165    0.3 1
X166    0.1 3
X167    0.2 1
X168    0.3 1
X169    0.1428571429    7
X170    0.1 2
X171    0.1222222222    9
X172    0.1 8
X173    0.1 5
X174    0.1 8
X175    0.1666666667    3
X176    0.2 5
X177    0.1 4
X178    0.1166666667    6
X179    0.15    2
X180    0.3666666667    3
X181    0.25    4
X182    0.1 1
X183    0.1 2
X184    0.1 1
X185    0.1 1
X186    0.1 1
X187    0.184   25
X188    0.2333333333    3
X189    0.2333333333    3
X190    0.1 2
X191    0.32    5
X192    0.1 2
X193    0.12    5
X194    0.1 5
X195    0.2 1
X196    0.1 6
X197    0.1 2
X198    0.4 1
X199    0.2 2
X200    0.1 2
X201    0.2 1
X202    0.2333333333    6
X203    0.35    2
X204    0.1 1
X205    0.12    5
X206    0.14    5
X207    0.125   4
X208    0.3333333333    3
X209    0.1 2
X210    0.1 3
X211    0.1 1
X212    0.2 4
X213    0.15    8
X214    0.125   4
X215    0.1548387097    31
X216    0.2 7
X217    0.225   4
X218    0.125   4
X219    0.15    2
X220    0.4 1
X221    0.275   4
X222    0.325   4
X223    0.2 3
X224    0.175   4
X225    0.3 1
X226    0.1 1
X227    0.19    10
X228    0.25    4
X229    0.2666666667    9
X230    0.1 1
X231    0.2 1
X232    0.3 1
X233    0.2166666667    6
X234    0.26    5
X235    0.225   4
X236    0.1 1
X237    0.1857142857    7
X238    0.58    5
X239    0.25    10
X240    0.6066666667    15
X241    0.3 1
X242    0.5 2
X243    0.2333333333    3
X244    0.25    2
X245    0.1 4
X246    0.1 1
X247    0.1714285714    7
X248    0.16875 16
X249    0.2 1
X250    0.4 3
X251    0.1 1
X252    0.1666666667    6
X253    0.2 6
X254    0.3166666667    12
X255    0.1 1
X256    0.1 2
X257    0.4 1
X258    0.1333333333    3
X259    0.225   4
X260    0.2571428571    7
X261    0.4 5
X262    0.15    10
X263    0.1571428571    7
X264    0.2 11
X265    0.2285714286    7
X266    0.15    4
X267    0.3 1
X268    0.1384615385    13
X269    0.1 4
X270    0.1 1
X271    0.16    5
X272    0.1285714286    7
X273    0.1 1
X274    0.2222222222    9
X275    0.2083333333    12
X276    0.2153846154    13
X277    0.1888888889    9
X278    0.1 1
X279    0.1 2
X280    0.3 2
X281    0.17    10
X282    0.1 5
X283    0.2833333333    6
X284    0.1333333333    6
X285    0.1833333333    6
X286    0.1833333333    12
X287    0.1953488372    43
X288    0.2526315789    19
X289    0.1 1
X290    0.125   4
X291    0.26    5
X292    0.1 2
X293    0.2578947368    19
X294    0.2545454545    11
X295    0.1 1
X296    0.3666666667    3
X297    0.1714285714    7
X298    0.1833333333    6
X299    0.16    5
X300    0.2733333333    15
X301    0.275   4
X302    0.1 1
X303    0.2 7
X304    0.1583333333    12
X305    0.1666666667    3
X306    0.1 1
X307    0.1 6
X308    0.1642857143    14
X309    0.1 1
X310    0.1606060606    33
X311    0.1428571429    7
X312    0.1888888889    9
X313    0.2 2
X314    0.1388888889    18
X315    0.35    2
X316    0.3 2
X317    0.1 4
X318    0.15    16
X319    0.1166666667    12
X320    0.1888888889    9
X321    0.16    5
X322    0.2333333333    3
X323    0.1857142857    14
X324    0.31    20
X325    0.2 1
X326    0.1 1
X327    0.1952380952    21
X328    0.215625    32
X329    0.1 1
X330    0.1 1
X331    0.1307692308    13
X332    0.1 4
X333    0.1666666667    3
X334    0.2 14
X335    0.1583333333    12
X336    0.1961538462    26
X337    0.2222222222    9
X338    0.1 3
X339    0.1 2
X340    0.1285714286    14
X341    0.175   4
X342    0.125   4
X343    0.1 4
X344    0.1428571429    7
X345    0.1 4
X346    0.1 2
X347    0.15    2
X348    0.25    4
X349    0.22    5
X350    0.1 2
X351    0.1 3
X352    0.14    10
X353    0.1666666667    18
X354    0.1333333333    3
X355    0.2 3
X356    0.16    5
X357    0.3 1
X358    0.175   4
X359    0.5 1
X360    0.1111111111    9
X361    0.2333333333    6
X362    0.175   4
X363    0.227027027 37
X364    0.3857142857    7
X365    0.1 2
X366    0.2 3
X367    0.1916666667    12
X368    0.1428571429    14
X369    0.2666666667    3
X370    0.2 9
X371    0.25    2
X372    0.2 1
X373    0.1 2
X374    0.225   4
X375    0.1 1
X376    0.1 3
X377    0.3 2
X378    0.1 1
X379    0.1545454545    11
X380    0.1730769231    52
X381    0.1 3
X382    0.1333333333    3
X383    0.1814814815    27
X384    0.108   25
X385    0.2666666667    6
X386    0.1666666667    3
X387    0.25    8
X388    0.225   4
X389    0.24    25
X390    0.2666666667    6
X391    0.1 2
X392    0.15    4
X393    0.1666666667    6
X394    0.1 1
X395    0.2375  8
X396    0.125   4
X397    0.1 7
X398    0.1 7
X399    0.1 4
X400    0.1 2
X401    0.1625  8
X402    0.3 1
X403    0.3 2
X404    0.25    4
X405    0.2 1
X406    0.1285714286    7
X407    0.15    8
X408    0.5 1
X409    0.1 1
X410    0.1285714286    7
X411    0.1 1
X412    0.2166666667    30
X413    0.22    5
X414    0.2714285714    14
X415    0.1214285714    14
X416    0.2 8
X417    0.28    5
X418    0.24    35
X419    0.15    4
X420    0.1333333333    12
X421    0.125   4
X422    0.1 1
X423    0.1666666667    3
X424    0.2111111111    9
X425    0.3 4
X426    0.2 2
X427    0.2 3
X428    0.1 1
X429    0.1 1
X430    0.1617021277    47
X431    0.15    8
X432    0.1142857143    14
X433    0.15    4
X434    0.1384615385    13
X435    0.1 2
X436    0.1166666667    12
X437    0.1714285714    14
X438    0.2416666667    12
X439    0.1 1
X440    0.1428571429    7
X441    0.1 1
X442    0.1416666667    12
X443    0.3333333333    6
X444    0.2 1
X445    0.14    5
X446    0.2 3
X447    0.225   28
X448    0.1571428571    14
X449    0.1 1
X450    0.1583333333    12
X451    0.1518518519    27
X452    0.1363636364    11
X453    0.2 1
X454    0.1666666667    6
X455    0.1 1
X456    0.1333333333    3
X457    0.2368421053    19
X458    0.1222222222    9
X459    0.15    2
X460    0.2 1
X461    0.1625  24
X462    0.2 6
X463    0.1666666667    3
X464    0.1 3
X465    0.3 8
X466    0.1523809524    21
X467    0.1 3
X468    0.1 3
X469    0.15    4
X470    0.1 1
X471    0.1642857143    28
X472    0.1 5
X473    0.1 2
X474    0.12    15
X475    0.1 3
X476    0.1090909091    11
X477    0.1346153846    26
X478    0.125   4
X479    0.1444444444    9
X480    0.2 1
X481    0.1 1
X482    0.1 3
X483    0.2 3
X484    0.1375  8
X485    0.1 4
X486    0.12    5
X487    0.1739130435    23
X488    0.25    2
X489    0.1333333333    6
X490    0.3 1
X491    0.225   20
X492    0.175   4
X493    0.1 3
X494    0.1222222222    9
X495    0.1 1
X496    0.175   4
X497    0.2333333333    6
X498    0.1615384615    13
X499    0.15    8
X500    0.1666666667    6
X501    0.2 2
X502    0.1777777778    9
X503    0.15    4
X504    0.2666666667    3
X505    0.1 4
X506    0.1222222222    9
X507    0.15    2
X508    0.2 3
X509    0.1333333333    15
X510    0.14    5
X511    0.1 1
X512    0.4 1
X513    0.2125  8
X514    0.36    5
X515    0.34    5
X516    0.4 1
X517    0.1428571429    7
X518    0.3333333333    3
X519    0.1 3
X520    0.2277777778    18
X521    0.1916666667    12
X522    0.2 4
X523    0.1857142857    7
X524    0.1 2
X525    0.1 5
X526    0.2222222222    9
X527    0.1818181818    11
X528    0.2151515152    33
X529    0.1 3
X530    0.1214285714    14
X531    0.2 1
X532    0.1 2
X533    0.1 3
X534    0.1166666667    12
X535    0.1 2
X536    0.1 2
X537    0.1 1
X538    0.2379310345    29
X539    0.175   4
X540    0.1363636364    11
X541    0.1 1
X542    0.1479166667    48
X543    0.1928571429    28
X544    0.4 1
X545    0.1951219512    41
X546    0.1333333333    3
X547    0.15    4
X548    0.2833333333    6
X549    0.1547619048    42
X550    0.1555555556    9
X551    0.2363636364    11
X552    0.2142857143    7
X553    0.5 1
X554    0.15    4
X555    0.1709677419    31
X556    0.17    10
X557    0.1 2
X558    0.2866666667    15
X559    0.4 2
X560    0.15    2
X561    0.1424242424    66
X562    0.25    2
X563    0.1 3
X564    0.1285714286    7
X565    0.12    5
X566    0.25    4
X567    0.2263157895    19
X568    0.1 12
X569    0.1666666667    6
X570    0.5 1
X571    0.147826087 23
X572    0.1 1
X573    0.1818181818    11
X574    0.2 2
X575    0.15    2
X576    0.2 3
X577    0.16    15
X578    0.1621621622    37
X579    0.1333333333    3
X580    0.1333333333    12
X581    0.18    5
X582    0.1534482759    58
X583    0.1538461538    26
X584    0.1 9
X585    0.2142857143    7
X586    0.1 1
X587    0.1222222222    9
X588    0.1 1
X589    0.1 3
X590    0.1 6
X591    0.15    2
X592    0.1 2
X593    0.3 1
X594    0.1285714286    21
X595    0.2 2
X596    0.12    5
X597    0.1 1
X598    0.1 1
X599    0.1 2
X600    0.1153846154    13
X601    0.1 15
X602    0.1 1
X603    0.1 1
X604    0.1 4
X605    0.15    10
X606    0.15    4
X607    0.15    4
X608    0.2 1
X609    0.14    5
X610    0.2 1
X611    0.1 2
X612    0.1 3
X613    0.125   4
X614    0.172   25
X615    0.2 4
X616    0.1727272727    11
X617    0.2090909091    22
X618    0.1333333333    3
X619    0.1 7
X620    0.15    4
X621    0.1181818182    11
X622    0.1375  8
X623    0.1666666667    3
X624    0.1 3
X625    0.1090909091    11
X626    0.125   8
X627    0.1 2
X628    0.12    5
X629    0.1 8
X630    0.13    40
X631    0.1666666667    3
X632    0.34    5
X633    0.1714285714    7
X634    0.1636363636    11
X635    0.1 1
X636    0.1 1
X637    0.18125 16
X638    0.2 4
X639    0.2 8
X640    0.1 2
X641    0.1 1
X642    0.1166666667    6
X643    0.2 1
X644    0.6 1
X645    0.2666666667    9
X646    0.2666666667    3
X647    0.2 2
X648    0.1 2
X649    0.1 1
X650    0.1 2
X651    0.1 1
X652    0.125   4
X653    0.15    2
X654    0.1 1
X655    0.1 1
X656    0.35    4
X657    0.2666666667    3
X658    0.1 2
X659    0.1 1
X660    0.2 1
X661    0.1 2
X662    0.1 2
X663    0.1333333333    3
X664    0.1 2
X665    0.1 1
X666    0.225   4
X667    0.1666666667    6
X668    0.1 2
X669    0.1 3
X670    0.175   4
X671    0.1 3
X672    0.15    4
X673    0.1666666667    3
X674    0.1 3
X675    0.175   4
X676    0.25    8
X677    0.25    4
X678    0.2571428571    7
X679    0.1 1
X680    0.2571428571    7
X681    0.208   25
X682    0.325   12
X683    0.1 1
X684    0.25    2
X685    0.1 2
X686    0.3047619048    21
X687    0.24    5
X688    0.15    6
X689    0.1333333333    6
X690    0.3 1
X691    0.1 1
X692    0.15    2
X693    0.23    20
X694    0.2 2
X695    0.1666666667    6
X696    0.1342857143    35
X697    0.25    6
X698    0.2 8
X699    0.2 5
X700    0.5 1
X701    0.1333333333    6
X702    0.3 1
X703    0.15    2
X704    0.15    2
X705    0.1833333333    6
X706    0.15    6
X707    0.1493506494    77
X708    0.36    5
X709    0.3 2
X710    0.15    2
X711    0.38    5
X712    0.2666666667    3
X713    0.25    4
X714    0.225   4
X715    0.5 1
X716    0.1 2
X717    0.16    5
X718    0.3 2
X719    0.3538461538    13
X720    0.1 2
X721    0.175   4
X722    0.22    5
X723    0.175   4
X724    0.2333333333    6
X725    0.34    5
X726    0.2 7
X727    0.1 1
X728    0.3 3
X729    0.1 1
X730    0.1 3
X731    0.3 5
X732    0.35    6
X733    0.2875  8
X734    0.1 1
X735    0.1 2
X736    0.2 5
X737    0.1714285714    7
X738    0.375   4
X739    0.1 4
X740    0.3 1
X741    0.1 1
X742    0.1142857143    7
X743    0.1 1
X744    0.2285714286    7
X745    0.14    5
X746    0.15    6
X747    0.1 1
X748    0.125   4
X749    0.1666666667    6
X750    0.125   8
X751    0.1 1
X752    0.15    2
X753    0.2 1
X754    0.225   4
X755    0.3 1
X756    0.3 5
X757    0.175   4
X758    0.1 3
X759    0.1333333333    18
X760    0.1230769231    13
X761    0.2 1
X762    0.11    10
X763    0.1666666667    6
X764    0.1 1
X765    0.2090909091    11
X766    0.145   20
X767    0.14    5
X768    0.2375  8
X769    0.1571428571    7
X770    0.1 1
X771    0.1 2
X772    0.2 2
X773    0.16    5
X774    0.2 1
X775    0.1777777778    9
X776    0.1210526316    19
X777    0.2 1
X778    0.225   12
X779    0.1666666667    3
X780    0.1 6
X781    0.2333333333    6
X782    0.1692307692    13
X783    0.19    10
X784    0.2 3
X785    0.1489361702    47
X786    0.2 5
X787    0.45    2
X788    0.1666666667    6
X789    0.18    5
X790    0.3 1
X791    0.2 2
X792    0.11    10
X793    0.3333333333    3
X794    0.25    2
X795    0.2 1
X796    0.25    2
X797    0.2 2
X798    0.2 1
X799    0.1 3
X800    0.1333333333    18
X801    0.1473684211    19
X802    0.2 5
X803    0.14    5
X804    0.125   4
X805    0.1583333333    12
X806    0.1857142857    7
X807    0.1 1
X808    0.2 1
X809    0.1769230769    26
X810    0.1 1
X811    0.1 2
X812    0.1833333333    6
X813    0.1409090909    22
X814    0.1416666667    24
X815    0.1307692308    13
X816    0.1235294118    17
X817    0.1 1
X818    0.1 1
X819    0.18    30
X820    0.2514285714    35
X821    0.18    5
X822    0.2 4
X823    0.1 1
X824    0.2333333333    9
X825    0.1222222222    9
X826    0.15    2
X827    0.14    5
X828    0.1588235294    51
X829    0.15    2
X830    0.2 4
X831    0.1 2
X832    0.1391304348    23
X833    0.18    20
X834    0.15    2
X835    0.3 1
X836    0.1 8
X837    0.1666666667    9
X838    0.1954545455    22
X839    0.225   16
X840    0.1222222222    9
X841    0.1210526316    19
X842    0.1 2
X843    0.1 2
X844    0.125   4
X845    0.1 4
X846    0.1 1
X847    0.2 2
X848    0.275   4
X849    0.1 3
X850    0.2833333333    6
X851    0.175   4
X852    0.32    5
X853    0.1 1
X854    0.1428571429    7
X855    0.2277777778    18
X856    0.15    8
X857    0.12    5
X858    0.1 2
X859    0.175   4
X860    0.18    5
X861    0.16    5
X862    0.2333333333    6
X863    0.1 1
X864    0.3333333333    3
X865    0.1 2
X866    0.15    12
X867    0.1636363636    11
X868    0.4 1
X869    0.4 1
X870    0.1 3
X871    0.1555555556    9
X872    0.2 1
X873    0.3 1
X874    0.2 2
X875    0.15    12
X876    0.1 1
X877    0.1181818182    11
X878    0.1428571429    7
X879    0.1461538462    13
X880    0.3076923077    13
X881    0.2 2
X882    0.3 1
X883    0.205   20
X884    0.2 5
X885    0.1333333333    3
X886    0.15    2
X887    0.25    2
X888    0.15    4
X889    0.3 1
X890    0.125   4
X891    0.1875  8
X892    0.1428571429    7
X893    0.2333333333    3
X894    0.1 2
X895    0.1 1
X896    0.35    6
X897    0.1444444444    9
X898    0.2 2
X899    0.3 1
X900    0.1 2
X901    0.1 1
X902    0.25    2
X903    0.1 1
X904    0.1 1
X905    0.7 1
X906    0.2 1
X907    0.45    4
X908    0.25    2
X909    0.15    4
X910    0.1 2
X911    0.4 13
X912    0.1 2
X913    0.1842105263    19
X914    0.1 1
X915    0.1333333333    3
X916    0.2 2
X917    0.1 7
X918    0.1 1
X919    0.225   4
X920    0.2 1
X921    0.2 3
X922    0.18    5
X923    0.1 1
X924    0.1875  8
X925    0.2833333333    6
X926    0.5 3
X927    0.2 1
X928    0.1 1
X929    0.1 2
X930    0.2 3
X931    0.4 1
X932    0.2875  16
X933    0.1857142857    7
X934    0.1 1
X935    0.2 2
X936    0.1 1
X937    0.2 13
X938    0.2444444444    9
X939    0.1 1
X940    0.1714285714    7
X941    0.3 1
X942    0.1 1
X943    0.2857142857    7
X944    0.15    2
X945    0.1 1
X946    0.15625 16
X947    0.1666666667    3
X948    0.3 1
X949    0.2 2
X950    0.1 8
X951    0.1 1
X952    0.1 3
X953    0.3 1
X954    0.3 1
X955    0.1 3
X956    0.1125  8
X957    0.18    5
X958    0.2666666667    3
X959    0.2 1
X960    0.125   4
X961    0.1333333333    3
X962    0.2444444444    9
X963    0.25    10
X964    0.25    4
X965    0.2 1
X966    0.225   4
X967    0.1625  8
X968    0.1333333333    3
X969    0.1333333333    3
X970    0.1 1
X971    0.2 7
X972    0.3 10
X973    0.1 1
X974    0.3 2
X975    0.225   4
X976    0.1 1
X977    0.1 2
X978    0.4 1
X979    0.1333333333    3
X980    0.1333333333    9
X981    0.13125 16
X982    0.1 1
X983    0.2 1
X984    0.1782608696    23
X985    0.2225806452    31
X986    0.15    4
X987    0.1 3
X988    0.1 3
X989    0.15    4
X990    0.2285714286    14
X991    0.2384615385    26
X992    0.4 1
X993    0.4 2
X994    0.1 1
X995    0.1 1
X996    0.1666666667    3
X997    0.1 6
X998    0.13    20
X999    0.2666666667    3

When I use y ~ c + a*b^x with the following implementation:

#try to fit the model
fit_regression <-nlrq(Data$mean_score ~ c + a*b^Data$Snps_per_gene, data=Data, start=list(a=0.1,b=0.5, c=1))
#plot regression
lines(Data$Snps_per_gene, predict(fit_regression, newdata=Data$Snps_per_gene), lty=2, col = "red")

It looks like this:

在这里输入图像描述

I haven't figured out why it appears to plot multiple lines.

Thanks in advance for your assistance.

Based on feedback I tried plotting the regression using this code:

    #first the data is sorted
    Data <- Data[order(Snps_per_gene),]

    pframe <- data.frame(total=seq(0,8000,length=21811))
    pframe$val <- predict(fitquant, newdata=pframe)
    with(pframe,lines(total, val, lty=2, col = "red"))

The result is:

在这里输入图像描述

This looks like a an actual regression line, but the slope of the curve suggests to me that the formula or parameters are maybe not appropriate for the data.


For plotting the results, you want something like

pframe <- data.frame(total=seq(0,8000,length=201))
pframe$val <- predict(fitquant, newdata=pframe)
with(pframe,lines(total, val, lty=2, col = "red")

If you just predict with the original values, the line will go back and forth because they're out of order. You could just sort them, but you probably don't need a prediction for every value if all you want to do is draw a smooth line ...

I did a little bit more exploration with the subset data you give above. I used ggplot with various nonparametric regression options (generalized additive model on the left, loess on the right). Based on these plots it doesn't actually look like there's much pattern in the mean ... It also seems based on the pattern of discreteness in the left-hand plot that some of the heteroscedasticity here might be driven by a binomial or quasi-binomial process (eg when there are few SNPs per gene, the proportions often fall at intervals of 0.1, 0.2, ...)

dd <- read.table("SO33312712.dat",header=TRUE)
library(ggplot2); theme_set(theme_bw())
library(viridis)
library(gridExtra) ## for grid.arrange
library(scales)  ## for squish
g0 <- ggplot(dd,aes(Snps_per_gene,Mean_score))
g1A <- g0 + stat_sum(alpha=0.5)+scale_size(range=c(3,10))+
    geom_smooth(method="gam",formula=y~s(x,k=30))+
        geom_vline(xintercept=5,colour="red")
g1B <- g0 +geom_hex()+
    scale_fill_viridis()+
        geom_smooth()+
            scale_y_continuous(limit=c(0.1,0.7),oob=squish)
png("snps.png",width=960,height=480)
grid.arrange(g1A,g1B,nrow=1)

在这里输入图像描述

链接地址: http://www.djcxy.com/p/30946.html

上一篇: 使用RODBC从数据框创建表

下一篇: 寻找非适当的公式