> vs.> =会导致显着的性能差异
我只是偶然发现了一些事情。 起初我认为这可能是一个分支预测失误的情况,就像在这种情况下一样,但我无法解释为什么分支预测失误会导致这种现象。 我在Java中实现了两个版本的Bubble Sort,并进行了一些性能测试:
import java.util.Random;
public class BubbleSortAnnomaly {
public static void main(String... args) {
final int ARRAY_SIZE = Integer.parseInt(args[0]);
final int LIMIT = Integer.parseInt(args[1]);
final int RUNS = Integer.parseInt(args[2]);
int[] a = new int[ARRAY_SIZE];
int[] b = new int[ARRAY_SIZE];
Random r = new Random();
for (int run = 0; RUNS > run; ++run) {
for (int i = 0; i < ARRAY_SIZE; i++) {
a[i] = r.nextInt(LIMIT);
b[i] = a[i];
}
System.out.print("Sorting with sortA: ");
long start = System.nanoTime();
int swaps = bubbleSortA(a);
System.out.println( (System.nanoTime() - start) + " ns. "
+ "It used " + swaps + " swaps.");
System.out.print("Sorting with sortB: ");
start = System.nanoTime();
swaps = bubbleSortB(b);
System.out.println( (System.nanoTime() - start) + " ns. "
+ "It used " + swaps + " swaps.");
}
}
public static int bubbleSortA(int[] a) {
int counter = 0;
for (int i = a.length - 1; i >= 0; --i) {
for (int j = 0; j < i; ++j) {
if (a[j] > a[j + 1]) {
swap(a, j, j + 1);
++counter;
}
}
}
return (counter);
}
public static int bubbleSortB(int[] a) {
int counter = 0;
for (int i = a.length - 1; i >= 0; --i) {
for (int j = 0; j < i; ++j) {
if (a[j] >= a[j + 1]) {
swap(a, j, j + 1);
++counter;
}
}
}
return (counter);
}
private static void swap(int[] a, int j, int i) {
int h = a[i];
a[i] = a[j];
a[j] = h;
}
}
如您所见,这两种排序方法之间的唯一区别是>
vs. >=
。 当用java BubbleSortAnnomaly 50000 10 10
运行程序时,显然希望sortB
比sortA
慢。 但是我在三台不同的机器上得到了以下(或类似的)输出:
Sorting with sortA: 4.214 seconds. It used 564960211 swaps.
Sorting with sortB: 2.278 seconds. It used 1249750569 swaps.
Sorting with sortA: 4.199 seconds. It used 563355818 swaps.
Sorting with sortB: 2.254 seconds. It used 1249750348 swaps.
Sorting with sortA: 4.189 seconds. It used 560825110 swaps.
Sorting with sortB: 2.264 seconds. It used 1249749572 swaps.
Sorting with sortA: 4.17 seconds. It used 561924561 swaps.
Sorting with sortB: 2.256 seconds. It used 1249749766 swaps.
Sorting with sortA: 4.198 seconds. It used 562613693 swaps.
Sorting with sortB: 2.266 seconds. It used 1249749880 swaps.
Sorting with sortA: 4.19 seconds. It used 561658723 swaps.
Sorting with sortB: 2.281 seconds. It used 1249751070 swaps.
Sorting with sortA: 4.193 seconds. It used 564986461 swaps.
Sorting with sortB: 2.266 seconds. It used 1249749681 swaps.
Sorting with sortA: 4.203 seconds. It used 562526980 swaps.
Sorting with sortB: 2.27 seconds. It used 1249749609 swaps.
Sorting with sortA: 4.176 seconds. It used 561070571 swaps.
Sorting with sortB: 2.241 seconds. It used 1249749831 swaps.
Sorting with sortA: 4.191 seconds. It used 559883210 swaps.
Sorting with sortB: 2.257 seconds. It used 1249749371 swaps.
当你将LIMIT
的参数设置为例如50000
( java BubbleSortAnnomaly 50000 50000 10
)时,你会得到预期的结果:
Sorting with sortA: 3.983 seconds. It used 625941897 swaps.
Sorting with sortB: 4.658 seconds. It used 789391382 swaps.
我将程序移植到C ++以确定此问题是否是Java特定的。 这是C ++代码。
#include <cstdlib>
#include <iostream>
#include <omp.h>
#ifndef ARRAY_SIZE
#define ARRAY_SIZE 50000
#endif
#ifndef LIMIT
#define LIMIT 10
#endif
#ifndef RUNS
#define RUNS 10
#endif
void swap(int * a, int i, int j)
{
int h = a[i];
a[i] = a[j];
a[j] = h;
}
int bubbleSortA(int * a)
{
const int LAST = ARRAY_SIZE - 1;
int counter = 0;
for (int i = LAST; 0 < i; --i)
{
for (int j = 0; j < i; ++j)
{
int next = j + 1;
if (a[j] > a[next])
{
swap(a, j, next);
++counter;
}
}
}
return (counter);
}
int bubbleSortB(int * a)
{
const int LAST = ARRAY_SIZE - 1;
int counter = 0;
for (int i = LAST; 0 < i; --i)
{
for (int j = 0; j < i; ++j)
{
int next = j + 1;
if (a[j] >= a[next])
{
swap(a, j, next);
++counter;
}
}
}
return (counter);
}
int main()
{
int * a = (int *) malloc(ARRAY_SIZE * sizeof(int));
int * b = (int *) malloc(ARRAY_SIZE * sizeof(int));
for (int run = 0; RUNS > run; ++run)
{
for (int idx = 0; ARRAY_SIZE > idx; ++idx)
{
a[idx] = std::rand() % LIMIT;
b[idx] = a[idx];
}
std::cout << "Sorting with sortA: ";
double start = omp_get_wtime();
int swaps = bubbleSortA(a);
std::cout << (omp_get_wtime() - start) << " seconds. It used " << swaps
<< " swaps." << std::endl;
std::cout << "Sorting with sortB: ";
start = omp_get_wtime();
swaps = bubbleSortB(b);
std::cout << (omp_get_wtime() - start) << " seconds. It used " << swaps
<< " swaps." << std::endl;
}
free(a);
free(b);
return (0);
}
该程序显示相同的行为。 有人可以解释一下,这里究竟发生了什么?
先执行sortB
然后sortA
不会改变结果。
我认为这可能确实是由于分支预测。 如果您计算交换次数与内部排序迭代次数的比较,您会发现:
限制= 10
限制= 50000
因此,在Limit == 10
情况下,交换在B类中执行99.98%的时间,这对于分支预测器显然是有利的。 在Limit == 50000
情况下,交换只是随机命中68%,所以分支预测器的好处不大。
我认为这可以通过分支预测失误来解释。
例如,考虑LIMIT = 11和sortB
。 在外层循环的第一次迭代中,它会很快地碰到一个等于10的元素。所以它将有a[j]=10
,因此肯定a[j]
将是>=a[next]
,因为那里没有大于10的元素。因此,它将执行交换,然后在j
只执行一步,再次发现a[j]=10
(相同的交换值)。 所以再一次,它将是a[j]>=a[next]
,等等。 除了几个比较之外,每个比较都是真实的。 同样,它将在外循环的下一次迭代中运行。
sortA
不一样。 它会以大致相同的方式开始,偶然发现a[j]=10
,以类似的方式做一些掉期交易,但是只有当它找到a[next]=10
也是如此。 那么条件将是错误的,不会进行交换。 等等:每当它在a[next]=10
上绊倒时,条件是错误的,并且没有交换完成。 因此,这个条件在11个(从0到9的a[next]
值)中是10次,在11个中是1个是false。没有什么奇怪的分支预测失败。
使用提供的C ++代码(删除了时间计数)和perf stat
命令,我得到了证实brach-miss理论的结果。
当Limit = 10
,BubbleSortB从分支预测(0.01%未命中)中获益匪浅,但Limit = 50000
分支预测的失败甚至比BubbleSortA(失败率分别为12.69%和12.76%)还要多15.65%。
BubbleSortA限制= 10:
Performance counter stats for './bubbleA.out':
46670.947364 task-clock # 0.998 CPUs utilized
73 context-switches # 0.000 M/sec
28 CPU-migrations # 0.000 M/sec
379 page-faults # 0.000 M/sec
117,298,787,242 cycles # 2.513 GHz
117,471,719,598 instructions # 1.00 insns per cycle
25,104,504,912 branches # 537.904 M/sec
3,185,376,029 branch-misses # 12.69% of all branches
46.779031563 seconds time elapsed
BubbleSortA限制= 50000:
Performance counter stats for './bubbleA.out':
46023.785539 task-clock # 0.998 CPUs utilized
59 context-switches # 0.000 M/sec
8 CPU-migrations # 0.000 M/sec
379 page-faults # 0.000 M/sec
118,261,821,200 cycles # 2.570 GHz
119,230,362,230 instructions # 1.01 insns per cycle
25,089,204,844 branches # 545.136 M/sec
3,200,514,556 branch-misses # 12.76% of all branches
46.126274884 seconds time elapsed
BubbleSortB限制= 10:
Performance counter stats for './bubbleB.out':
26091.323705 task-clock # 0.998 CPUs utilized
28 context-switches # 0.000 M/sec
2 CPU-migrations # 0.000 M/sec
379 page-faults # 0.000 M/sec
64,822,368,062 cycles # 2.484 GHz
137,780,774,165 instructions # 2.13 insns per cycle
25,052,329,633 branches # 960.179 M/sec
3,019,138 branch-misses # 0.01% of all branches
26.149447493 seconds time elapsed
BubbleSortB限制= 50000:
Performance counter stats for './bubbleB.out':
51644.210268 task-clock # 0.983 CPUs utilized
2,138 context-switches # 0.000 M/sec
69 CPU-migrations # 0.000 M/sec
378 page-faults # 0.000 M/sec
144,600,738,759 cycles # 2.800 GHz
124,273,104,207 instructions # 0.86 insns per cycle
25,104,320,436 branches # 486.101 M/sec
3,929,572,460 branch-misses # 15.65% of all branches
52.511233236 seconds time elapsed
链接地址: http://www.djcxy.com/p/31561.html