张量流中的值误差
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/temp/data", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
# matrix = height * width
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
# defining the neural network
def neural_network_model(data):
hiddenLayer1 = {'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hiddenLayer2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hiddenLayer3 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
outputLayer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hiddenLayer1['weights']), hiddenLayer1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hiddenLayer2['weights']), hiddenLayer2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hiddenLayer3['weights']), hiddenLayer3['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, outputLayer['weights']), outputLayer['biases']
return output
# training the network
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(prediction,tf.squeeze(y)))
#cost = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)
#cost = tf.reduce_mean(cost) * 100
optimizer = tf.train.AdamOptimizer(0.003).minimize(cost)
# cycles feed forward + backprop
numberOfEpochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#dealing with training data
for epoch in range(numberOfEpochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, ' completed out of ', numberOfEpochs, ' loss: ', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
print('Accuracy: ', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
train_neural_network(x)
我是Tensorflow的新手,我试图训练我的模型来读取数据集。 但每次运行代码时,都会出现此错误:
Traceback(最近一次调用的最后一个):train_neural_network(x)中第87行的文件“firstAI.py”,train_neural_network中的第62行文件“firstAI.py”,cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(prediction,tf .squeeze(Y))); 文件“/home/phillipus/.local/lib/python3.6/site-packages/tensorflow/python/ops/nn_ops.py”,第1935行,在sparse_softmax_cross_entropy_with_logits标签,logits)文件“/home/phillipus/.local/ lib / python3.6 / site-packages / tensorflow / python / ops / nn_ops.py“,第1713行,在_ensure_xent_args”named arguments(labels = ...,logits = ...,...)“%name) ValueError:只调用具有命名参数的sparse_softmax_cross_entropy_with_logits
(标签= ...,logits = ...,...)
看起来问题出在“ cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(prediction,tf.squeeze(y))) ”和调用“ train_neural_network(x) ”函数。 我是Tensorflow的新手,所以我的故障排除不是最好的,任何人都可以帮助我?
也许你可以在成本计算中尝试使用tf.nn.softmax_cross_entropy_with_logits而不是tf.nn.sparse_softmax_cross_entropy_with_logits。
但是,如果您想继续使用tf.nn.sparse_softmax_cross_entropy_with_logits,则此链接可能有所帮助:Tensorflow ValueError:只能使用命名参数调用`sparse_softmax_cross_entropy_with_logits`。
顺便说一下,您使用的tensorflow和python的版本是什么?
尝试运行这个:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/temp/data", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
# matrix = height * width
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
# defining the neural network
def neural_network_model(data):
hiddenLayer1 = {'weights': tf.Variable(tf.random_normal([784,
n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hiddenLayer2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hiddenLayer3 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
outputLayer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
l1 = tf.add(tf.matmul(data, hiddenLayer1['weights']), hiddenLayer1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hiddenLayer2['weights']), hiddenLayer2['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hiddenLayer3['weights']), hiddenLayer3['biases'])
l3 = tf.nn.relu(l3)
output = tf.add(tf.matmul(l3, outputLayer['weights']),outputLayer['biases'])
return output
prediction = neural_network_model(x)
cost = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)
optimizer = tf.train.AdamOptimizer(0.003).minimize(cost)
# cycles feed forward + backprop
numberOfEpochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#dealing with training data
for epoch in range(numberOfEpochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, ' completed out of ', numberOfEpochs, ' loss: ', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
print('Accuracy: ', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
链接地址: http://www.djcxy.com/p/32133.html
上一篇: Value Error in tensorflow
下一篇: what does it mean having a negative cost for my training set?