collection pause time in a Haskell program

We are developing a program which receives and forwards "messages", while keeping a temporary history of those messages, so that it can tell you the message history if requested. Messages are identified numerically, are typically around 1 kilobyte in size, and we need to keep hundreds of thousands of these messages.

We wish to optimize this program for latency: the time between sending and receiving a message must be below 10 milliseconds.

The program is written in Haskell and compiled with GHC. However, we have found that garbage collection pauses are far too long for our latency requirements: over 100 milliseconds in our real-world program.

The following program is a simplified version of our application. It uses a Data.Map.Strict to store messages. Messages are ByteString s identified by an Int . 1,000,000 messages are inserted in increasing numeric order, and the oldest messages are continually removed to keep the history at a maximum of 200,000 messages.

module Main (main) where

import qualified Control.Exception as Exception
import qualified Control.Monad as Monad
import qualified Data.ByteString as ByteString
import qualified Data.Map.Strict as Map

data Msg = Msg !Int !ByteString.ByteString

type Chan = Map.Map Int ByteString.ByteString

message :: Int -> Msg
message n = Msg n (ByteString.replicate 1024 (fromIntegral n))

pushMsg :: Chan -> Msg -> IO Chan
pushMsg chan (Msg msgId msgContent) =
  Exception.evaluate $
    let
      inserted = Map.insert msgId msgContent chan
    in
      if 200000 < Map.size inserted
      then Map.deleteMin inserted
      else inserted

main :: IO ()
main = Monad.foldM_ pushMsg Map.empty (map message [1..1000000])

We compiled and ran this program using:

$ ghc --version
The Glorious Glasgow Haskell Compilation System, version 7.10.3
$ ghc -O2 -optc-O3 Main.hs
$ ./Main +RTS -s
   3,116,460,096 bytes allocated in the heap
     385,101,600 bytes copied during GC
     235,234,800 bytes maximum residency (14 sample(s))
     124,137,808 bytes maximum slop
             600 MB total memory in use (0 MB lost due to fragmentation)

                                     Tot time (elapsed)  Avg pause  Max pause
  Gen  0      6558 colls,     0 par    0.238s   0.280s     0.0000s    0.0012s
  Gen  1        14 colls,     0 par    0.179s   0.250s     0.0179s    0.0515s

  INIT    time    0.000s  (  0.000s elapsed)
  MUT     time    0.652s  (  0.745s elapsed)
  GC      time    0.417s  (  0.530s elapsed)
  EXIT    time    0.010s  (  0.052s elapsed)
  Total   time    1.079s  (  1.326s elapsed)

  %GC     time      38.6%  (40.0% elapsed)

  Alloc rate    4,780,213,353 bytes per MUT second

  Productivity  61.4% of total user, 49.9% of total elapsed

The important metric here is the "max pause" of 0.0515s, or 51 milliseconds. We wish to reduce this by at least an order of magnitude.

Experimentation shows that the length of a GC pause is determined by the number of messages in the history. The relationship is roughly linear, or perhaps super-linear. The following table shows this relationship. (You can see our benchmarking tests here, and some charts here.)

msgs history length  max GC pause (ms)
===================  =================
12500                                3
25000                                6
50000                               13
100000                              30
200000                              56
400000                             104
800000                             199
1600000                            487
3200000                           1957
6400000                           5378

We have experimented with several other variables to find whether they can reduce this latency, none of which make a big difference. Among these unimportant variables are: optimization ( -O , -O2 ); RTS GC options ( -G , -H , -A , -c ), number of cores ( -N ), different data structures ( Data.Sequence ), the size of messages, and the amount of generated short-lived garbage. The overwhelming determining factor is the number of messages in the history.

Our working theory is that the pauses are linear in the number of messages because each GC cycle has to walk over all the working accessible memory and copy it, which are clearly linear operations.

Questions:

  • Is this linear-time theory correct? Can the length of GC pauses be expressed in this simple way, or is the reality more complex?
  • If GC pause is linear in the working memory, is there any way to reduce the constant factors involved?
  • Are there any options for incremental GC, or anything like it? We can only see research papers. We are very willing to trade throughput for lower latency.
  • Are there any ways to "partition" memory for smaller, GC cycles, other than splitting into multiple processes?

  • You're actually doing pretty well to have a 51ms pause time with over 200Mb of live data. The system I work on has a larger max pause time with half that amount of live data.

    Your assumption is correct, the major GC pause time is directly proportional to the amount of live data, and unfortunately there's no way around that with GHC as it stands. We experimented with incremental GC in the past, but it was a research project and didn't reach the level of maturity needed to fold it into the released GHC.

    One thing that we're hoping will help with this in the future is compact regions: https://phabricator.haskell.org/D1264. It's a kind of manual memory management where you compact a structure in the heap, and the GC doesn't have to traverse it. It works best for long-lived data, but perhaps it will be good enough to use for individual messages in your setting. We're aiming to have it in GHC 8.2.0.

    If you're in a distributed setting and have a load-balancer of some kind there are tricks you can play to avoid taking the pause hit, you basically make sure that the load-balancer doesn't send requests to machines that are about to do a major GC, and of course make sure that the machine still completes the GC even though it isn't getting requests.


    I've tried your code snippet with a ringbuffer approach using IOVector as the underlying data structure. On my system (GHC 7.10.3, same compilation options) this resulted in a reduction of max time (the metric you mentioned in your OP) by ~22%.

    NB. I made two assumptions here:

  • A mutable data structure is an okay fit for the problem (I guess message passing implies IO anyhow)
  • Your messageId's are continuous
  • With some additional Int parameter and arithmetic (like when messageId's are reset back to 0 or minBound ) it should then be straightforward to determine whether a certain message is still in the history and retrieve it form the corresponding index in the ringbuffer.

    For your testing pleasure:

    import qualified Control.Exception as Exception
    import qualified Control.Monad as Monad
    import qualified Data.ByteString as ByteString
    import qualified Data.Map.Strict as Map
    
    import qualified Data.Vector.Mutable as Vector
    
    data Msg = Msg !Int !ByteString.ByteString
    
    type Chan = Map.Map Int ByteString.ByteString
    
    data Chan2 = Chan2
        { next          :: !Int
        , maxId         :: !Int
        , ringBuffer    :: !(Vector.IOVector ByteString.ByteString)
        }
    
    chanSize :: Int
    chanSize = 200000
    
    message :: Int -> Msg
    message n = Msg n (ByteString.replicate 1024 (fromIntegral n))
    
    
    newChan2 :: IO Chan2
    newChan2 = Chan2 0 0 <$> Vector.unsafeNew chanSize
    
    pushMsg2 :: Chan2 -> Msg -> IO Chan2
    pushMsg2 (Chan2 ix _ store) (Msg msgId msgContent) =
        let ix' = if ix == chanSize then 0 else ix + 1
        in Vector.unsafeWrite store ix' msgContent >> return (Chan2 ix' msgId store)
    
    pushMsg :: Chan -> Msg -> IO Chan
    pushMsg chan (Msg msgId msgContent) =
      Exception.evaluate $
        let
          inserted = Map.insert msgId msgContent chan
        in
          if chanSize < Map.size inserted
          then Map.deleteMin inserted
          else inserted
    
    main, main1, main2 :: IO ()
    
    main = main2
    
    main1 = Monad.foldM_ pushMsg Map.empty (map message [1..1000000])
    
    main2 = newChan2 >>= c -> Monad.foldM_ pushMsg2 c (map message [1..1000000])
    

    I have to agree with the others - if you have hard real-time constraints, then using a GC language is not ideal.

    However, you might consider experimenting with other available data structures rather than just Data.Map.

    I rewrote it using Data.Sequence and got some promising improvements:

    msgs history length  max GC pause (ms)
    ===================  =================
    12500                              0.7
    25000                              1.4
    50000                              2.8
    100000                             5.4
    200000                            10.9
    400000                            21.8
    800000                            46
    1600000                           87
    3200000                          175
    6400000                          350
    

    Even though you're optimising for latency, I noticed other metrics improving too. In the 200000 case, execution time drops from 1.5s to 0.2s, and total memory usage drops from 600MB to 27MB.

    I should note that I cheated by tweaking the design:

  • I removed the Int from the Msg , so it's not in two places.
  • Instead of using a Map from Int s to ByteString s, I used a Sequence of ByteString s, and instead of one Int per message, I think it can be done with one Int for the whole Sequence . Assuming messages can't get reordered, you can use a single offset to translate which message you want to where it sits in the queue.
  • (I included an additional function getMsg to demonstrate that.)

    {-# LANGUAGE BangPatterns #-}
    
    import qualified Control.Exception as Exception
    import qualified Control.Monad as Monad
    import qualified Data.ByteString as ByteString
    import Data.Sequence as S
    
    newtype Msg = Msg ByteString.ByteString
    
    data Chan = Chan Int (Seq ByteString.ByteString)
    
    message :: Int -> Msg
    message n = Msg (ByteString.replicate 1024 (fromIntegral n))
    
    maxSize :: Int
    maxSize = 200000
    
    pushMsg :: Chan -> Msg -> IO Chan
    pushMsg (Chan !offset sq) (Msg msgContent) =
        Exception.evaluate $
            let newSize = 1 + S.length sq
                newSq = sq |> msgContent
            in
            if newSize <= maxSize
                then Chan offset newSq
                else
                    case S.viewl newSq of
                        (_ :< newSq') -> Chan (offset+1) newSq'
                        S.EmptyL -> error "Can't happen"
    
    getMsg :: Chan -> Int -> Maybe Msg
    getMsg (Chan offset sq) i_ = getMsg' (i_ - offset)
        where
        getMsg' i
            | i < 0            = Nothing
            | i >= S.length sq = Nothing
            | otherwise        = Just (Msg (S.index sq i))
    
    main :: IO ()
    main = Monad.foldM_ pushMsg (Chan 0 S.empty) (map message [1..5 * maxSize])
    
    链接地址: http://www.djcxy.com/p/33194.html

    上一篇: Haskell性能示例

    下一篇: 在Haskell程序中收集暂停时间