Vectorized Lookups of Pandas Series to a Dictionary
Problem Statement:
A pandas dataframe column series, same_group
needs to be created from booleans according to the values of two existing columns, row
and col
. The row needs to show True if both cells across a row have similar values (intersecting values) in a dictionary memberships
, and False otherwise (no intersecting values). How do I do this in a vectorized way (not using apply)?
Setup:
import pandas as pd
import numpy as np
n = np.nan
memberships = {
'a':['vowel'],
'b':['consonant'],
'c':['consonant'],
'd':['consonant'],
'e':['vowel'],
'y':['consonant', 'vowel']
}
congruent = pd.DataFrame.from_dict(
{'row': ['a','b','c','d','e','y'],
'a': [ n, -.8,-.6,-.3, .8, .01],
'b': [-.8, n, .5, .7,-.9, .01],
'c': [-.6, .5, n, .3, .1, .01],
'd': [-.3, .7, .3, n, .2, .01],
'e': [ .8,-.9, .1, .2, n, .01],
'y': [ .01, .01, .01, .01, .01, n],
}).set_index('row')
congruent.columns.names = ['col']
cs = congruent.stack().to_frame()
cs.columns = ['score']
cs.reset_index(inplace=True)
cs.head(6)
The Desired Goal:
How do I accomplish creating this new column based on a lookup on a dictionary?
Note that I'm trying to find intersection, not equivalence. For example, row 4 should have a same_group
of 1, since a
and y
are both vowels (despite that y
is "sometimes a vowel" and thus belongs to groups consonant and vowel).
# create a series to make it convenient to map
# make each member a set so I can intersect later
lkp = pd.Series(memberships).apply(set)
# get number of rows and columns
# map the sets to column and row indices
n, m = congruent.shape
c = congruent.columns.to_series().map(lkp).values
r = congruent.index.to_series().map(lkp).values
print(c)
[{'vowel'} {'consonant'} {'consonant'} {'consonant'} {'vowel'}
{'consonant', 'vowel'}]
print(r)
[{'vowel'} {'consonant'} {'consonant'} {'consonant'} {'vowel'}
{'consonant', 'vowel'}]
# use np.repeat, np.tile, zip to create cartesian product
# this should match index after stacking
# apply set intersection for each pair
# empty sets are False, otherwise True
same = [
bool(set.intersection(*tup))
for tup in zip(np.repeat(r, m), np.tile(c, n))
]
# use dropna=False to ensure we maintain the
# cartesian product I was expecting
# then slice with boolean list I created
# and dropna
congruent.stack(dropna=False)[same].dropna()
row col
a e 0.80
y 0.01
b c 0.50
d 0.70
y 0.01
c b 0.50
d 0.30
y 0.01
d b 0.70
c 0.30
y 0.01
e a 0.80
y 0.01
y a 0.01
b 0.01
c 0.01
d 0.01
e 0.01
dtype: float64
Produce wanted result
congruent.stack(dropna=False).reset_index(name='Score')
.assign(same_group=np.array(same).astype(int)).dropna()
Idea: let's convert your lists of ['vowel', 'consonant']
to binary [1, 2]
and use bitwise operations:
Setup:
In [138]: lkp2 = pd.Series(memberships)
.apply(pd.Series)
.replace({'vowel':1, 'consonant':2})
.sum(1)
.astype('uint8')
In [139]: lkp2
Out[139]:
a 1 # 'vovel'
b 2 # 'consonant'
c 2 # 'consonant'
d 2 # 'consonant'
e 1 # 'vovel'
y 3 # 1 | 2 = 3 - both bits are set
dtype: uint8
Solution:
In [140]: cs['same_group'] = np.bitwise_and(cs.row.map(lkp2), cs.col.map(lkp2)).ne(0).mul(1)
In [141]: cs
Out[141]:
row col score same_group
0 a b -0.80 0
1 a c -0.60 0
2 a d -0.30 0
3 a e 0.80 1
4 a y 0.01 1
5 b a -0.80 0
6 b c 0.50 1
7 b d 0.70 1
8 b e -0.90 0
9 b y 0.01 1
10 c a -0.60 0
11 c b 0.50 1
12 c d 0.30 1
13 c e 0.10 0
14 c y 0.01 1
15 d a -0.30 0
16 d b 0.70 1
17 d c 0.30 1
18 d e 0.20 0
19 d y 0.01 1
20 e a 0.80 1
21 e b -0.90 0
22 e c 0.10 0
23 e d 0.20 0
24 e y 0.01 1
25 y a 0.01 1
26 y b 0.01 1
27 y c 0.01 1
28 y d 0.01 1
29 y e 0.01 1
30 y y 0.00 1
Timing: against 3.1M rows DF:
In [180]: cs = pd.concat([cs] * 10**5, ignore_index=True)
In [181]: cs.shape
Out[181]: (3100000, 3)
In [182]: %timeit np.bitwise_and(cs.row.map(lkp2), cs.col.map(lkp2)).ne(0).mul(1)
1 loop, best of 3: 466 ms per loop
Here is an attempt:
I sliced the data using iloc. memberships[my_slice] gives me the value in dictionary memberships and int(memberships[my_slice]) returns 1 if true and 0 if false making it easy to append that number directly in the new column same_group.
grp = []
for i in range(len(cs)):
if 'y' not in cs.iloc[i,[0,1]][0|1]:
grp.append(int(memberships[cs.iloc[i,[0,1]][0]] == memberships[cs.iloc[i,[0,1]][1]]))
i+=1
else:
grp.append(int(memberships[cs.iloc[i,[0,1]][0|1]] == memberships[cs.iloc[i,[0,1]][0|1]]))
i+=1
same_grp = pd.Series(grp)
cs = pd.concat([cs, same_grp], axis = 1)
cs.columns = ['row', 'col', 'score', 'same_grp']
cs.head(10)
I used the condition (if 'y' not in cs.iloc[i,[0,1]][0|1]) to handle the fact that y can have two values.
链接地址: http://www.djcxy.com/p/37926.html上一篇: 正确排序从最新到最旧的节点
下一篇: 熊猫系列矢量化查找到字典