Plot training, validation and test set accuracy
I want to plot the output of this simple neural network:
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(x_test, y_test, nb_epoch=10, validation_split=0.2, shuffle=True)
model.test_on_batch(x_test, y_test)
model.metrics_names
I have plotted accuracy and loss of training and validation:
print(history.history.keys())
# "Accuracy"
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
# "Loss"
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
Now I want to add and plot test set's accuracy from model.test_on_batch(x_test, y_test)
, but from model.metrics_names
I obtain the same value 'acc' utilized for plotting accuracy on training data plt.plot(history.history['acc'])
. How could I plot test set's accuracy?
It is the same because you are training on the test set, not on the train set. Don't do that, just train on the training set:
history = model.fit(x_test, y_test, nb_epoch=10, validation_split=0.2, shuffle=True)
Change into:
history = model.fit(x_train, y_train, nb_epoch=10, validation_split=0.2, shuffle=True)
链接地址: http://www.djcxy.com/p/38156.html
上一篇: Zuul路径从根路径
下一篇: 绘制训练,验证和测试集精度