caret saving minimum size model
In caret how to save minimum size model. In this example the gbmFit1
contains gbmFit1$trainingData
. Saving gbmFit1
saves all such variables. As my training data is big, I want to get rid off all such extra variables and want to save the model with minimum size.
library(mlbench)
library(caret)
data(Sonar)
x <- Sonar[, colnames(Sonar)!="Class"]
y <- Sonar$Class
gbmFit1 <- train(x,y, method = "gbm", verbose = FALSE)
predict(gbmFit1, x[1:10, ]) #predict for 10 samples
##[1] R R R R R R R R R R
##Levels: M R
dim(gbmFit1$trainingData)
#[1] 208 61
Using only predict(gbmFit1$finalModel, x[1:10, ])
gives error:
predict(gbmFit1$finalModel, x[1:10, ])
##Error in paste("Using", n.trees, "trees...n") :
##argument "n.trees" is missing, with no default
I think this should do it:
library(mlbench)
library(caret)
data(Sonar)
x <- Sonar[, colnames(Sonar)!="Class"]
y <- Sonar$Class
tc1 <- trainControl(returnData = F) # tells caret not to save training data.
gbmFit1 <- train(x,y, method = "gbm", verbose = FALSE, trControl = tc1)
predict(gbmFit1$finalModel, x[1:10, ], gbmFit1$finalModel$tuneValue$n.trees) # passes n.trees value to gbm.
You might want to read up on the trainControl
functionality in caret here: https://topepo.github.io/caret/model-training-and-tuning.html#control
上一篇: 如何在插入符中再现$ train和'train'对象的$ resample和$ result?
下一篇: 插入符号保存最小尺寸模型