effects modeled as monads in Haskell?
Could anyone give some pointers on why the impure computations in Haskell are modelled as monads?
I mean monad is just an interface with 4 operations, so what was the reasoning to modelling side-effects in it?
Suppose a function has side effects. If we take all the effects it produces as the input and output parameters, then the function is pure to the outside world.
So for an impure function
f' :: Int -> Int
we add the RealWorld to the consideration
f :: Int -> RealWorld -> (Int, RealWorld)
-- input some states of the whole world,
-- modify the whole world because of the a side effects,
-- then return the new world.
then f
is pure again. We define a parametrized data type IO a = RealWorld -> (a, RealWorld)
, so we don't need to type RealWorld so many times
f :: Int -> IO Int
To the programmer, handling a RealWorld directly is too dangerous—in particular, if a programmer gets their hands on a value of type RealWorld, they might try to copy it, which is basically impossible. (Think of trying to copy the entire filesystem, for example. Where would you put it?) Therefore, our definition of IO encapsulates the states of the whole world as well.
These impure functions are useless if we can't chain them together. Consider
getLine :: IO String = RealWorld -> (String, RealWorld)
getContents :: String -> IO String = String -> RealWorld -> (String, RealWorld)
putStrLn :: String -> IO () = String -> RealWorld -> ((), RealWorld)
We want to get a filename from the console, read that file, then print the content out. How would we do it if we can access the real world states?
printFile :: RealWorld -> ((), RealWorld)
printFile world0 = let (filename, world1) = getLine world0
(contents, world2) = (getContents filename) world1
in (putStrLn contents) world2 -- results in ((), world3)
We see a pattern here: the functions are called like this:
...
(<result-of-f>, worldY) = f worldX
(<result-of-g>, worldZ) = g <result-of-f> worldY
...
So we could define an operator ~~~
to bind them:
(~~~) :: (IO b) -> (b -> IO c) -> IO c
(~~~) :: (RealWorld -> (b, RealWorld))
-> (b -> RealWorld -> (c, RealWorld))
-> RealWorld -> (c, RealWorld)
(f ~~~ g) worldX = let (resF, worldY) = f worldX in
g resF worldY
then we could simply write
printFile = getLine ~~~ getContents ~~~ putStrLn
without touching the real world.
Now suppose we want to make the file content uppercase as well. Uppercasing is a pure function
upperCase :: String -> String
But to make it into the real world, it has to return an IO String
. It is easy to lift such a function:
impureUpperCase :: String -> RealWorld -> (String, RealWorld)
impureUpperCase str world = (upperCase str, world)
this can be generalized:
impurify :: a -> IO a
impurify :: a -> RealWorld -> (a, RealWorld)
impurify a world = (a, world)
so that impureUpperCase = impurify . upperCase
impureUpperCase = impurify . upperCase
, and we can write
printUpperCaseFile =
getLine ~~~ getContents ~~~ (impurify . upperCase) ~~~ putStrLn
(Note: Normally we write getLine ~~~ getContents ~~~ (putStrLn . upperCase)
)
Now let's see what we've done:
(~~~) :: IO b -> (b -> IO c) -> IO c
which chains two impure functions together impurify :: a -> IO a
which converts a pure value to impure. Now we make the identification (>>=) = (~~~)
and return = impurify
, and see? We've got a monad.
(To check whether it's really a monad there's few axioms should be satisfied:
(1) return a >>= f = fa
impurify a = (world -> (a, world))
(impurify a ~~~ f) worldX = let (resF, worldY) = (world -> (a, world)) worldX
in f resF worldY
= let (resF, worldY) = (a, worldX))
in f resF worldY
= f a worldX
(2) f >>= return = f
(f ~~~ impurify) a worldX = let (resF, worldY) = impuify a worldX
in f resF worldY
= let (resF, worldY) = (a, worldX)
in f resF worldY
= f a worldX
(3) f >>= (x -> gx >>= h) = (f >>= g) >>= h
Exercise.)
Could anyone give some pointers on why the unpure computations in Haskell are modeled as monads?
This question contains a widespread misunderstanding. Impurity and Monad are independent notions. Impurity is not modeled by Monad. Rather, there are a few data types, such as IO
, that represent imperative computation. And for some of those types, a tiny fraction of their interface corresponds to the interface pattern called "Monad". Moreover, there is no known pure/functional/denotative explanation of IO
(and there is unlikely to be one, considering the "sin bin" purpose of IO
), though there is the commonly told story about World -> (a, World)
being the meaning of IO a
. That story cannot truthfully describe IO
, because IO
supports concurrency and nondeterminism. The story doesn't even work when for deterministic computations that allow mid-computation interaction with the world.
For more explanation, see this answer.
Edit: On re-reading the question, I don't think my answer is quite on track. Models of imperative computation do often turn out to be monads, just as the question said. The asker might not really assume that monadness in any way enables the modeling of imperative computation.
As I understand it, someone called Eugenio Moggi first noticed that a previously obscure mathematical construct called a "monad" could be used to model side effects in computer languages, and hence specify their semantics using Lambda calculus. When Haskell was being developed there were various ways in which impure computations were modelled (see Simon Peyton Jones' "hair shirt" paper for more details), but when Phil Wadler introduced monads it rapidly became obvious that this was The Answer. And the rest is history.
链接地址: http://www.djcxy.com/p/42960.html下一篇: 效果在Haskell中建模为单子?