结合Free类型

我最近一直在教自己关于免费软件包中的Free monad,但是我遇到了一个问题。 我想为不同的图书馆提供不同的免费monad,本质上我想为不同的上下文构建DSL,但我也希望能够将它们结合在一起。 举个例子:

{-# LANGUAGE DeriveFunctor #-}
module TestingFree where

import Control.Monad.Free

data BellsF x
    = Ring x
    | Chime x
    deriving (Functor, Show)

type Bells = Free BellsF

data WhistlesF x
    = PeaWhistle x
    | SteamWhistle x
    deriving (Functor, Show)

type Whistles = Free WhistlesF

ring :: Bells ()
ring = liftF $ Ring ()

chime :: Bells ()
chime = liftF $ Chime ()

peaWhistle :: Whistles ()
peaWhistle = liftF $ PeaWhistle ()

steamWhistle :: Whistles ()
steamWhistle = liftF $ SteamWhistle ()


playBells :: Bells r -> IO r
playBells (Pure r)         = return r
playBells (Free (Ring x))  = putStrLn "RingRing!" >> playBells x
playBells (Free (Chime x)) = putStr "Ding-dong!" >> playBells x

playWhistles :: Whistles () -> IO ()
playWhistles (Pure _)                = return ()
playWhistles (Free (PeaWhistle x))   = putStrLn "Preeeet!" >> playWhistles x
playWhistles (Free (SteamWhistle x)) = putStrLn "Choo-choo!" >> playWhistles x

现在,我希望能够创建一个类型BellsAndWhistles ,让我二者的功能结合起来BellsWhistles毫不费力。

由于问题在于组合monads,我首先想到的是查看Control.Monad.Trans.Free模块,以获得快速简单的解决方案。 不幸的是,有稀疏的例子,没有显示我想要做什么。 此外,似乎堆叠两个或更多自由MonadFree不起作用,因为MonadFree具有m -> f的函数依赖关系。 基本上,我希望能够编写如下代码:

newtype BellsAndWhistles m a = BellsAndWhistles
    { unBellsAndWhistles :: ???
    } deriving
        ( Functor
        , Monad
        -- Whatever else needed
        )

noisy :: Monad m => BellsAndWhistles m ()
noisy = do
    lift ring
    lift peaWhistle
    lift chime
    lift steamWhistle

play :: BellsAndWhistles IO () -> IO ()
play bellsNwhistles = undefined

但是, BellsWhistles可以存在于不同的模块中,并且不必知道每个其他实现。 我的想法是,我可以为不同的任务编写独立的模块,每个模块都实现自己的DSL,然后根据需要将它们组合成一个“更大”的DSL。 是否有捷径可寻?

作为奖励,能够利用已经编写的不同play*函数将是非常好的,这样我就可以将它们交换出去。 我希望能够使用一个免费的解释器进行调试,另一个在生产环境中使用,而且能够选择单独调试哪个DSL显然非常有用。


这是一个基于数据类型单点菜单的答案,除非没有类型类。 我建议阅读那篇论文。

诀窍是,而不是写口译BellsWhistles ,你定义译员的单函子步骤, BellsFWhistlesF ,就像这样:

playBellsF :: BellsF (IO a) -> IO a
playBellsF (Ring  io) = putStrLn "RingRing!"  >> io
playBellsF (Chime io) = putStr   "Ding-dong!" >> io

playWhistlesF :: WhistelsF (IO a) -> IO a
playWhistlesF (PeaWhistle   io) = putStrLn "Preeeet!"   >> io
playWhistlesF (SteamWhistle io) = putStrLn "choo-choo!" >> io

如果您选择不合并它们,您可以将它们传递给Control.Monad.Free.iterM以获取您的原始播放功能:

playBells    :: Bells a    -> IO a
playBells    = iterM playBell

playWhistles :: Whistles a -> IO a
playWhistles = iterM playWhistlesF

...但是,因为他们处理单一步骤,他们可以更容易地组合。 你可以像这样定义一个新的组合免费monad:

data BellsAndWhistlesF a = L (BellsF a) | R (WhistlesF a)

然后把它变成一个免费的monad:

type BellsAndWhistles = Free BellsAndWhistlesF

然后你根据两位BellsAndWhistlesF译员为BellsAndWhistlesF写一个口译员:

playBellsAndWhistlesF :: BellsAndWhistlesF (IO a) -> IO a
playBellsAndWhistlesF (L bs) = playBellsF    bs
playBellsAndWhistlesF (R ws) = playWhistlesF ws

...然后你通过将它传递给iterM来获得免费monad的解释器:

playBellsAndWhistles :: BellsAndWhistles a -> IO a
playBellsAndWhistles = iterM playBellsAndWhistlesF

所以你的问题的答案是,组合自由单体的诀窍是通过为单独的函子步骤(“代数”)定义中间解释器来保存更多的信息。 这些“代数”比解释者更适合自由单体。


加布里埃尔的回答很有用,但我认为多加注意让这一切发挥作用是值得的,也就是说,两个Functor的总和也是一个Functor

-- | Data type to encode the sum of two 'Functor's @f@ and @g@.
data Sum f g a = InL (f a) | InR (g a)

-- | The 'Sum' of two 'Functor's is also a 'Functor'.
instance (Functor f, Functor g) => Functor (Sum f g) where
    fmap f (InL fa) = InL (fmap f fa)
    fmap f (InR ga) = InR (fmap f ga)

-- | Elimination rule for the 'Sum' type.
elimSum :: (f a -> r) -> (g a -> r) -> Sum f g a -> r
elimSum f _ (InL fa) = f fa
elimSum _ g (InR ga) = g ga

(Edward Kmett的图书馆将此作为Data.Functor.Coproduct 。)

所以如果FunctorFree monads的“指令集”,那么:

  • Sum函数为您提供了这样的指令集的联合,并因此提供了相应的组合空闲单元
  • elimSum函数是一个基本规则,它允许您从解释器中为fg elimSum一个Sum fg解释器。
  • “数据类型点菜”技术就是您在开发这种洞察力时所获得的技术 - 只需手工完成它就非常值得。

    这种Functor代数是一个有价值的东西学习。 例如:

    data Product f g a = Product (f a) (g a)
    
    -- | The 'Product' of two 'Functor's is also a 'Functor'.
    instance (Functor f, Functor g) => Functor (Product f g) where
       fmap f (Product fa ga) = Product (fmap f fa) (fmap f ga)
    
    -- | The 'Product' of two 'Applicative's is also an 'Applicative'.
    instance (Applicative f, Applicative g) => Applicative (Product f g) where
       pure x = Product (pure x) (pure x)
       Product ff gf <*> Product fa ga = Product (ff <*> fa) (gf <*> ga)
    
    
    -- | 'Compose' is to 'Applicative' what monad transformers are to 'Monad'.
    -- If your problem domain doesn't need the full power of the 'Monad' class, 
    -- then applicative composition might be a good alternative on how to combine
    -- effects.
    data Compose f g a = Compose (f (g a))
    
    -- | The composition of two 'Functor's is also a 'Functor'.
    instance (Functor f, Functor g) => Functor (Compose f g) where
       fmap f (Compose fga) = Compose (fmap (fmap f) fga)
    
    -- | The composition of two 'Applicative's is also an 'Applicative'.
    instance (Applicative f, Applicative g) => Applicative (Compose f g) where
       pure = Compose . pure . pure
       Compose fgf <*> Compose fga = Compose ((<*>) <$> fgf <*> fga)
    

    Gershom Bazerman的博客文章“Abstract with Applicative s”扩展了关于Applicative的这些观点,非常值得一读。


    编辑:我会注意到的最后一件事是,当人们为他们的自由monads设计他们的自定义Functor子时,事实上,他们隐含地使用了这些技巧。 我会从加布里埃尔的“为什么免费单子很重要”中举两个例子:

    data Toy b next =
        Output b next
      | Bell next
      | Done
    
    data Interaction next =
        Look Direction (Image -> next)
      | Fire Direction next
      | ReadLine (String -> next)
      | WriteLine String (Bool -> next)
    

    所有这些都可以分析成ProductSumCompose(->)函数和以下三个函数的组合:

    -- | Provided by "Control.Applicative"
    newtype Const b a = Const b
    
    instance Functor (Const b) where
        fmap _ (Const b) = Const b
    
    
    -- | Provided by "Data.Functor.Identity"
    newtype Identity a = Identity a
    
    instance Functor Identity where
        fmap f (Identity a) = Identity (f a)
    
    
    -- | Near-isomorphic to @Const ()@
    data VoidF a = VoidF
    
    instance Functor VoidF where
        fmap _ VoidF = VoidF
    

    因此,为简洁起见,使用以下类型的同义词:

    {-# LANGUAGE TypeOperators #-}
    
    type f :+: g = Sum f g
    type f :*: g = Product f g
    type f :.: g = Compose f g
    
    infixr 6 :+:
    infixr 7 :*:
    infixr 9 :.:
    

    ...我们可以重写这些函子:

    type Toy b = Const b :*: Identity :+: Identity :+: VoidF
    
    type Interaction = Const Direction :*: ((->) Image :.: Identity)
                   :+: Const Direction :*: Identity
                   :+: (->) String :.: Identity
                   :+: Const String :*: ((->) Bool :.: Identity)
    
    链接地址: http://www.djcxy.com/p/43235.html

    上一篇: Combining Free types

    下一篇: Use of unsafePerformIO appropriate?