结合Free类型
我最近一直在教自己关于免费软件包中的Free
monad,但是我遇到了一个问题。 我想为不同的图书馆提供不同的免费monad,本质上我想为不同的上下文构建DSL,但我也希望能够将它们结合在一起。 举个例子:
{-# LANGUAGE DeriveFunctor #-}
module TestingFree where
import Control.Monad.Free
data BellsF x
= Ring x
| Chime x
deriving (Functor, Show)
type Bells = Free BellsF
data WhistlesF x
= PeaWhistle x
| SteamWhistle x
deriving (Functor, Show)
type Whistles = Free WhistlesF
ring :: Bells ()
ring = liftF $ Ring ()
chime :: Bells ()
chime = liftF $ Chime ()
peaWhistle :: Whistles ()
peaWhistle = liftF $ PeaWhistle ()
steamWhistle :: Whistles ()
steamWhistle = liftF $ SteamWhistle ()
playBells :: Bells r -> IO r
playBells (Pure r) = return r
playBells (Free (Ring x)) = putStrLn "RingRing!" >> playBells x
playBells (Free (Chime x)) = putStr "Ding-dong!" >> playBells x
playWhistles :: Whistles () -> IO ()
playWhistles (Pure _) = return ()
playWhistles (Free (PeaWhistle x)) = putStrLn "Preeeet!" >> playWhistles x
playWhistles (Free (SteamWhistle x)) = putStrLn "Choo-choo!" >> playWhistles x
现在,我希望能够创建一个类型BellsAndWhistles
,让我二者的功能结合起来Bells
和Whistles
毫不费力。
由于问题在于组合monads,我首先想到的是查看Control.Monad.Trans.Free
模块,以获得快速简单的解决方案。 不幸的是,有稀疏的例子,没有显示我想要做什么。 此外,似乎堆叠两个或更多自由MonadFree
不起作用,因为MonadFree
具有m -> f
的函数依赖关系。 基本上,我希望能够编写如下代码:
newtype BellsAndWhistles m a = BellsAndWhistles
{ unBellsAndWhistles :: ???
} deriving
( Functor
, Monad
-- Whatever else needed
)
noisy :: Monad m => BellsAndWhistles m ()
noisy = do
lift ring
lift peaWhistle
lift chime
lift steamWhistle
play :: BellsAndWhistles IO () -> IO ()
play bellsNwhistles = undefined
但是, Bells
和Whistles
可以存在于不同的模块中,并且不必知道每个其他实现。 我的想法是,我可以为不同的任务编写独立的模块,每个模块都实现自己的DSL,然后根据需要将它们组合成一个“更大”的DSL。 是否有捷径可寻?
作为奖励,能够利用已经编写的不同play*
函数将是非常好的,这样我就可以将它们交换出去。 我希望能够使用一个免费的解释器进行调试,另一个在生产环境中使用,而且能够选择单独调试哪个DSL显然非常有用。
这是一个基于数据类型单点菜单的答案,除非没有类型类。 我建议阅读那篇论文。
诀窍是,而不是写口译Bells
和Whistles
,你定义译员的单函子步骤, BellsF
和WhistlesF
,就像这样:
playBellsF :: BellsF (IO a) -> IO a
playBellsF (Ring io) = putStrLn "RingRing!" >> io
playBellsF (Chime io) = putStr "Ding-dong!" >> io
playWhistlesF :: WhistelsF (IO a) -> IO a
playWhistlesF (PeaWhistle io) = putStrLn "Preeeet!" >> io
playWhistlesF (SteamWhistle io) = putStrLn "choo-choo!" >> io
如果您选择不合并它们,您可以将它们传递给Control.Monad.Free.iterM
以获取您的原始播放功能:
playBells :: Bells a -> IO a
playBells = iterM playBell
playWhistles :: Whistles a -> IO a
playWhistles = iterM playWhistlesF
...但是,因为他们处理单一步骤,他们可以更容易地组合。 你可以像这样定义一个新的组合免费monad:
data BellsAndWhistlesF a = L (BellsF a) | R (WhistlesF a)
然后把它变成一个免费的monad:
type BellsAndWhistles = Free BellsAndWhistlesF
然后你根据两位BellsAndWhistlesF
译员为BellsAndWhistlesF
写一个口译员:
playBellsAndWhistlesF :: BellsAndWhistlesF (IO a) -> IO a
playBellsAndWhistlesF (L bs) = playBellsF bs
playBellsAndWhistlesF (R ws) = playWhistlesF ws
...然后你通过将它传递给iterM
来获得免费monad的解释器:
playBellsAndWhistles :: BellsAndWhistles a -> IO a
playBellsAndWhistles = iterM playBellsAndWhistlesF
所以你的问题的答案是,组合自由单体的诀窍是通过为单独的函子步骤(“代数”)定义中间解释器来保存更多的信息。 这些“代数”比解释者更适合自由单体。
加布里埃尔的回答很有用,但我认为多加注意让这一切发挥作用是值得的,也就是说,两个Functor
的总和也是一个Functor
:
-- | Data type to encode the sum of two 'Functor's @f@ and @g@.
data Sum f g a = InL (f a) | InR (g a)
-- | The 'Sum' of two 'Functor's is also a 'Functor'.
instance (Functor f, Functor g) => Functor (Sum f g) where
fmap f (InL fa) = InL (fmap f fa)
fmap f (InR ga) = InR (fmap f ga)
-- | Elimination rule for the 'Sum' type.
elimSum :: (f a -> r) -> (g a -> r) -> Sum f g a -> r
elimSum f _ (InL fa) = f fa
elimSum _ g (InR ga) = g ga
(Edward Kmett的图书馆将此作为Data.Functor.Coproduct
。)
所以如果Functor
是Free
monads的“指令集”,那么:
elimSum
函数是一个基本规则,它允许您从解释器中为f
和g
elimSum
一个Sum fg
解释器。 “数据类型点菜”技术就是您在开发这种洞察力时所获得的技术 - 只需手工完成它就非常值得。
这种Functor
代数是一个有价值的东西学习。 例如:
data Product f g a = Product (f a) (g a)
-- | The 'Product' of two 'Functor's is also a 'Functor'.
instance (Functor f, Functor g) => Functor (Product f g) where
fmap f (Product fa ga) = Product (fmap f fa) (fmap f ga)
-- | The 'Product' of two 'Applicative's is also an 'Applicative'.
instance (Applicative f, Applicative g) => Applicative (Product f g) where
pure x = Product (pure x) (pure x)
Product ff gf <*> Product fa ga = Product (ff <*> fa) (gf <*> ga)
-- | 'Compose' is to 'Applicative' what monad transformers are to 'Monad'.
-- If your problem domain doesn't need the full power of the 'Monad' class,
-- then applicative composition might be a good alternative on how to combine
-- effects.
data Compose f g a = Compose (f (g a))
-- | The composition of two 'Functor's is also a 'Functor'.
instance (Functor f, Functor g) => Functor (Compose f g) where
fmap f (Compose fga) = Compose (fmap (fmap f) fga)
-- | The composition of two 'Applicative's is also an 'Applicative'.
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure = Compose . pure . pure
Compose fgf <*> Compose fga = Compose ((<*>) <$> fgf <*> fga)
Gershom Bazerman的博客文章“Abstract with Applicative
s”扩展了关于Applicative
的这些观点,非常值得一读。
编辑:我会注意到的最后一件事是,当人们为他们的自由monads设计他们的自定义Functor
子时,事实上,他们隐含地使用了这些技巧。 我会从加布里埃尔的“为什么免费单子很重要”中举两个例子:
data Toy b next =
Output b next
| Bell next
| Done
data Interaction next =
Look Direction (Image -> next)
| Fire Direction next
| ReadLine (String -> next)
| WriteLine String (Bool -> next)
所有这些都可以分析成Product
, Sum
, Compose
, (->)
函数和以下三个函数的组合:
-- | Provided by "Control.Applicative"
newtype Const b a = Const b
instance Functor (Const b) where
fmap _ (Const b) = Const b
-- | Provided by "Data.Functor.Identity"
newtype Identity a = Identity a
instance Functor Identity where
fmap f (Identity a) = Identity (f a)
-- | Near-isomorphic to @Const ()@
data VoidF a = VoidF
instance Functor VoidF where
fmap _ VoidF = VoidF
因此,为简洁起见,使用以下类型的同义词:
{-# LANGUAGE TypeOperators #-}
type f :+: g = Sum f g
type f :*: g = Product f g
type f :.: g = Compose f g
infixr 6 :+:
infixr 7 :*:
infixr 9 :.:
...我们可以重写这些函子:
type Toy b = Const b :*: Identity :+: Identity :+: VoidF
type Interaction = Const Direction :*: ((->) Image :.: Identity)
:+: Const Direction :*: Identity
:+: (->) String :.: Identity
:+: Const String :*: ((->) Bool :.: Identity)
链接地址: http://www.djcxy.com/p/43235.html
上一篇: Combining Free types