约束约束的论点

我有接受的名单...的名单列表第一类型类leaf

{-# LANGUAGE MultiParamTypeClasses, FlexibleInstances, UndecidableInstances #-}
class ListTree leaf t where
  lmap :: (leaf -> leaf) -> t -> t
instance ListTree leaf leaf where lmap f v = f v
instance ListTree leaf t => ListTree leaf [t] where lmap f v = map (lmap f) v

我有接受2元组和三元组的第二类型类a

class Tups a t where
  tmap :: (a -> a) -> t -> t
instance Tups a (a,a) where tmap f (x,y) = (f x, f y)
instance Tups a (a,a,a) where tmap f (x,y,z) = (f x, f y, f z)

我想结合它们来描述以某种leaf型的2-或3-元组结尾的嵌套列表:

class LTTree leaf t where
  ltmap :: (a -> a) -> t -> t
instance (Tups leaf x, ListTree x t) => LTTree leaf t where ltmap f v = lmap (tmap f) v

但是,这最后一段代码给了我几个错误:

Could not deduce (LTTree leaf0 t)
  from the context: LTTree leaf t

In the ambiguity check for ‘ltmap’
  To defer the ambiguity check to use sites, enable AllowAmbiguousTypes

Could not deduce (Tups leaf x0)
  from the context: (Tups leaf x, ListTree x t)

In the ambiguity check for an instance declaration
  To defer the ambiguity check to use sites, enable AllowAmbiguousTypes
  In the instance declaration for ‘LTTree leaf t’

如果我添加AllowAmbiguousTypes ,我仍然会得到类似的错误。

虽然我可以通过内嵌其他两个类型类的代码来很好地定义LTTree类:

class LTTree leaf t where
  ltmap :: (leaf -> leaf) -> t -> t
instance LTTree leaf (leaf,leaf) where ltmap f (x,y) = (f x, f y)
instance LTTree leaf (leaf,leaf,leaf) where ltmap f (x,y,z) = (f x, f y, f z)
instance LTTree leaf t => LTTree leaf [t] where ltmap f v = map (ltmap f)

我怎样才能结合ListTree leaf t带班Tups at类,以便列出的树的叶子是2或3元组a 如果可以提供帮助,我不介意增加额外的GHC扩展。

如果它很重要,我的实际使用情况是对树的列表树进行建模,其中叶是行多态记录(使用CTRex),其中记录中的每个字段都是某种类型类的实例(例如Show ,以打印树)。


你有另一个问题。 你的ListTree类没用!

> lmap id [5 :: Integer]
error: blah blah
> lmap id (5 :: Integer)
error: blah blah
> lmap (+2) [[5::Integer], [], [2,3]]
error: blah blah

首先添加一些黑魔法来解决这个问题:

{-# LANGUAGE FunctionalDependencies, GADTs #-}
class ListTree leaf tree where lmap :: (leaf -> leaf) -> (tree -> tree)
instance {-# OVERLAPPABLE #-} (leaf ~ tree) => ListTree leaf tree where -- 1
  lmap = id
instance ListTree leaf tree => ListTree leaf [tree] where -- 2
  lmap = map . lmap

(a ~ b) GADTs (a ~ b)是一个等式约束;当ab是相同类型时,它就成立a ,它需要使用GADTsTypeFamilies 。)

根据实例解析的规则,当检查lmap id [5 :: Integer] ,GHC会遇到两个实例并且发现它们都可以被实例化: 1leaf = [Integer]tree = [Integer]2leaf = Integertree = [Integer] 。 要选择一个,它会检查2的实例是否对1有效。 那就是:是leaf = Integertree = [Integer]1的有效实例吗? 答案是肯定的,因为直到后来才会检查具有平等限制的上下文。 然后,它检查OVERLAPPABLE / OVERLAPPING / OVERLAPS 。 如果有更好的实例, OVERLAPPABLE实例会被抛弃。 在这种情况下, 1被丢弃,只剩下2 。 它被使用了,所以lmap id [5 :: Integer] == [5] 。 其他的例子也适用。

LTTree ,你有一个错字。 它应该是:

class LTTree leaf tree where ltmap :: (leaf -> leaf) -> tree -> tree

leaf ,而不是a 。 你还有另外一个问题:推理者非常生气,因为它让所有这些工作成为可能:

> instance (Tups leaf x, ListTree x t) => LTTree leaf t where ltmap f v = lmap (tmap f) v
error: blah blah

启用ScopedTypeVariablesTypeApplications ,以帮助它一起:

{-# LANGUAGE ScopedTypeVariables, TypeApplications #-}
instance (Tups leaf x, ListTree x t) => LTTree leaf t where ltmap f v = lmap @x @t (tmap @leaf @x f) v

(或者只是用::显式指定类型,但这很痛苦)

但更好的想法是启用FunctionalDependencies并开始喷洒它们,因为它们代表了类型级计算的概念:类型类的参数的一些子集可以唯一地确定其他类。 这会产生最终版本:

{-# LANGUAGE FlexibleInstances
           , FunctionalDependencies
           , GADTs
           , UndecidableInstances #-}
class ListTree leaf tree | tree -> leaf where lmap :: (leaf -> leaf) -> tree -> tree
instance {-# OVERLAPPABLE #-} (leaf ~ tree) => ListTree leaf tree where lmap = id
instance ListTree leaf tree => ListTree leaf [tree] where lmap = map . lmap
-- The tree determines the leaf

class Tups leaf tree | tree -> leaf where tmap :: (leaf -> leaf) -> tree -> tree
-- Change instances to help type inference along:
instance (a ~ b) => Tups a (a, b) where tmap f (x, y) = (f x, f y)
instance (a ~ b, b ~ c) => Tups a (a, b, c) where tmap f (x, y, z) = (f x, f y, f z)
-- tmap (+2) (5 :: Integer, 3, 2) now works because the type info from 5 spreads out
-- via the equality constraints

class LTTree leaf tree | tree -> leaf where ltmap :: (leaf -> leaf) -> tree -> tree
instance (Tups leaf mid, ListTree mid tree) => LTTree leaf tree where ltmap = lmap . tmap
-- mid can be deduced from tree via ListTree's fundep
-- leaf can be deduced from mid via Tups' fundep
-- leaf can be deduced from tree

它的工作原理!

> ltmap (+(2 :: Integer)) [[[(5, 2)]], [], [[(2, 8), (4, 5)]]]
[[[(7,4)]],[],[[(4,10),(6,7)]]]
链接地址: http://www.djcxy.com/p/43543.html

上一篇: Constraining the argument of a constraint

下一篇: Typeclass instance with row type in instance head?