CUDA multi中的并发性

我在多GPU系统上运行一个cuda内核函数,使用4 GPU。 我期望他们同时发布,但他们不是。 我测量每个内核的开始时间,第二个内核在第一个内核执行完毕后开始。 因此,在4 GPU上启动内核速度不会快于1单GPU。

我怎样才能让他们同时工作?

这是我的代码:

cudaSetDevice(0);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_0, parameterA +(0*rateA), parameterB + (0*rateB));
cudaMemcpyAsync(h_result_0, d_result_0, mem_size_result, cudaMemcpyDeviceToHost);

cudaSetDevice(1);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_1, parameterA +(1*rateA), parameterB + (1*rateB));
cudaMemcpyAsync(h_result_1, d_result_1, mem_size_result, cudaMemcpyDeviceToHost);

cudaSetDevice(2);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_2, parameterA +(2*rateA), parameterB + (2*rateB));
cudaMemcpyAsync(h_result_2, d_result_2, mem_size_result, cudaMemcpyDeviceToHost);

cudaSetDevice(3);
GPU_kernel<<< gridDim, threadsPerBlock >>>(d_result_3, parameterA +(3*rateA), parameterB + (3*rateB));
cudaMemcpyAsync(h_result_3, d_result_3, mem_size_result, cudaMemcpyDeviceToHost);

我已经做了一些实验,以实现在4 Kepler K20c GPU集群上的并发执行。 我已经考虑过8测试用例,它们的相应代码以及分析器时间线在下面报告。

测试用例#1 - “广度优先”方法 - 同步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    double *inputMatrices = (double *)malloc(N * sizeof(double));

    // --- "Breadth-first" approach - no async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpy(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpy(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 - 在这里输入图像描述

可以看出,使用cudaMemcpy不能实现副本中的并发,但在内核执行中实现并发。

测试用例#2 - “深度优先”方法 - 同步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    double *inputMatrices = (double *)malloc(N * sizeof(double));

    // --- "Depth-first" approach - no async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpy(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpy(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

这一次,在内存副本和内核执行中都没有实现并发性。

测试案例#3 - “深度优先”方法 - 与流异步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
    cudaStream_t    stream;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
    gpuErrchk(cudaStreamCreate(&plan.stream));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

     // --- "Depth-first" approach - async
    for (int k = 0; k < numGPUs; k++)
    {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice, plan[k].stream));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE, 0, plan[k].stream>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost, plan[k].stream));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

正如预期的那样,实现了并发性。

测试用例#4 - “深度优先”方法 - 在默认流中进行异步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Depth-first" approach - no stream
    for (int k = 0; k < numGPUs; k++)
    {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

尽管使用默认流,但实现了并发性。

测试用例#5 - “深度优先”方法 - 在默认流和独特主机cudaMallocHost ed vector中进行异步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
template<class T>
struct plan {
    T               *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Depth-first" approach - no stream
    double *inputMatrices;   gpuErrchk(cudaMallocHost(&inputMatrices, N * sizeof(double)));
    for (int k = 0; k < numGPUs; k++)
    {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
        gpuErrchk(cudaMemcpyAsync(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

并发性再次实现。

测试用例#6 - 使用流异步复制的“广度优先”方法

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
// --- Async
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
    cudaStream_t    stream;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
    gpuErrchk(cudaStreamCreate(&plan.stream));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Breadth-first" approach - async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice, plan[k].stream));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE, 0, plan[k].stream>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost, plan[k].stream));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

在相应的“深度优先”方法中实现了并发性。

测试用例#7 - “广度优先”方法 - 在默认流中异步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
// --- Async
template<class T>
struct plan {
    T               *d_data;
    T               *h_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
    gpuErrchk(cudaMallocHost((void **)&plan.h_data, NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Breadth-first" approach - async
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, plan[k].h_data, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].h_data, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

在相应的“深度优先”方法中实现了并发性。

测试用例#8 - “广度优先”方法 - 在默认流和唯一主机cudaMallocHost ed vector中进行异步复制

- 代码 -

#include "Utilities.cuh"
#include "InputOutput.cuh"

#define BLOCKSIZE 128

/*******************/
/* KERNEL FUNCTION */
/*******************/
template<class T>
__global__ void kernelFunction(T * __restrict__ d_data, const unsigned int NperGPU) {

    const int tid = threadIdx.x + blockIdx.x * blockDim.x;

    if (tid < NperGPU) for (int k = 0; k < 1000; k++) d_data[tid] = d_data[tid] * d_data[tid];

}

/******************/
/* PLAN STRUCTURE */
/******************/
// --- Async
template<class T>
struct plan {
    T               *d_data;
};

/*********************/
/* SVD PLAN CREATION */
/*********************/
template<class T>
void createPlan(plan<T>& plan, unsigned int NperGPU, unsigned int gpuID) {

    // --- Device allocation
    gpuErrchk(cudaSetDevice(gpuID));
    gpuErrchk(cudaMalloc(&(plan.d_data), NperGPU * sizeof(T)));
}

/********/
/* MAIN */
/********/
int main() {

    const int numGPUs   = 4;
    const int NperGPU   = 500000;
    const int N         = NperGPU * numGPUs;

    plan<double> plan[numGPUs];
    for (int k = 0; k < numGPUs; k++) createPlan(plan[k], NperGPU, k);

    // --- "Breadth-first" approach - async
    double *inputMatrices;   gpuErrchk(cudaMallocHost(&inputMatrices, N * sizeof(double)));
    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(plan[k].d_data, inputMatrices + k * NperGPU, NperGPU * sizeof(double), cudaMemcpyHostToDevice));
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        kernelFunction<<<iDivUp(NperGPU, BLOCKSIZE), BLOCKSIZE>>>(plan[k].d_data, NperGPU);
    }

    for (int k = 0; k < numGPUs; k++) {
        gpuErrchk(cudaSetDevice(k));
        gpuErrchk(cudaMemcpyAsync(inputMatrices + k * NperGPU, plan[k].d_data, NperGPU * sizeof(double), cudaMemcpyDeviceToHost));
    }

    gpuErrchk(cudaDeviceReset());
}

- Profiler时间表 -

在这里输入图像描述

在相应的“深度优先”方法中实现了并发性。

结论使用异步副本可以保证并发执行,可以使用故意创建的流或使用默认流。

注意在上面的所有例子中,我都注意提供足够的工作来完成GPU,无论是在复制和计算任务方面。 未能向集群提供足够的工作可能会妨碍观察并发执行。


您可能需要使用cudaMemcpyAsynccudaMemcpy阻止调用,因此在完成之前它不会将执行返回到您的代码,因此您的代码在完成当前程序之前不会切换GPU。

但是,内核调用是异步的(对于CPU),所以您发布的代码可能会导致一些竞争条件( cudaMemcpy可能会在内核完成之前开始执行)。 正如注释中指出的@talonmies,由于cudaMemcpy / cudaMemcpyAsync与内核启动进入相同的流,因此所有内容都按正确的顺序执行。

我建议你使用CUDA Streams; 这里简要介绍一下使用流的MultiGPU编程。 这对您的情况并不是很有帮助,但在更复杂的应用程序中使用可能非常方便,例如,如果您需要在不同设备之间同步功能调用。

链接地址: http://www.djcxy.com/p/47417.html

上一篇: Concurrency in CUDA multi

下一篇: Parallel GPU computing using OpenCV