有关运算符重载的问题
我有两个关于运算符重载的问题。
  对于迭代器类型, operator->如何重载?  假设它是一个class T对象集合的迭代器,它应该返回什么值? 
  为什么operator++()通过class T&返回,而operator++(int)通过class T返回?  我明白这两个代表前缀增量和后缀增量。  但为什么回报价值的差异? 
编辑:为Alf。 代码虽然功能尚未完成。 欢迎任何有待改进的建议。
#ifndef DHASH_H
#define DHASH_H
//#include <vector>
#include <memory>
#include <exception>
#include <new>
#include <algorithm>
#include <functional>
namespace MCol
{
    template <typename KEY, typename VALUE, typename HASH_FUNCTION, typename KEY_COMP = std::equal_to<KEY> >
        class hash_container
        {
            private:
                struct entry
                {
                    KEY _k;
                    VALUE _v;
                    entry(const KEY& k, const VALUE& v)
                        :_k(k), _v(v)
                    {}
                    entry& operator=(const entry& e)
                    {
                        this->_k = e._k;
                        this->_v = e._v;
                    }
                };
            private:
                struct bucket
                {
                    entry* a_Entries;
                    size_t sz_EntryCount;   
                    bucket()
                    {
                        sz_EntryCount = 0;
                        a_Entries = NULL;
                    }
                    ~bucket()
                    {
                        for(size_t szI = 0; szI < sz_EntryCount; ++szI)
                        {
                            a_Entries[szI].~entry();
                        }
                        free(a_Entries);
                    }
                    //Grow by 1. (Perhaps later try block increment. But wikipedia suggests that there is little difference between the two)
                    inline bool insert(const KEY& k, const VALUE& v) throw (std::bad_alloc)
                    {
                        if(find(k) != NULL)
                        {
                            return false;
                        }
                        a_Entries = static_cast<entry*>(realloc(a_Entries, sizeof(entry)*(++sz_EntryCount)));
                        if(a_Entries == NULL)
                        {
                            throw std::bad_alloc();
                        }
                        new (&a_Entries[sz_EntryCount - 1]) entry(k, v);
                        return true;
                    }
                    //Find entry, swap with last valid entry, remove if necessary.
                    inline bool erase(const KEY& k) throw(std::bad_alloc)
                    {
                        //Forwards or backwards? My guess is backwards is better.
                        entry* pE = a_Entries;
                        while(pE != a_Entries + sz_EntryCount)
                        {
                            if(pE->_k == k)
                            {
                                break;
                            }
                            ++pE;
                        }
                        if(pE == a_Entries + sz_EntryCount)
                        {
                            return false;
                        }
                        //We don't need to swap if the entry is the only one in the bucket or if it is the last one.
                        entry* pLast = a_Entries + sz_EntryCount - 1;
                        if((sz_EntryCount > 1) && (pE != pLast))
                        {
                            pE = pLast;
                        }
                        a_Entries = static_cast<entry*>(realloc(a_Entries, sizeof(entry)*(--sz_EntryCount)));
                        if(a_Entries == NULL && sz_EntryCount > 0)
                        {
                            throw std::bad_alloc();
                        }
                        return true;
                    }
                    inline entry* find(const KEY& k) throw()
                    {
                        //Better implement a search policy.
                        entry* pE = a_Entries;
                        while(pE != a_Entries + sz_EntryCount)
                        {
                            if(pE->_k == k)
                            {
                                break;
                            }
                            ++pE;
                        }
                        if(pE == a_Entries + sz_EntryCount)
                        {
                            return NULL;
                        }
                        return pE;
                    }
                };
                HASH_FUNCTION& _hf;
                KEY_COMP _kc;
                size_t sz_TableSize;
                double d_MultFactor;                                            //Recalculate this as 1/sz_TableSize everytime sz_TableSize changes.
                size_t sz_NextResizeLimit;
                size_t sz_EntryCount;
                double d_ExpectedLoadFactor;
                double d_CurrentLoadFactor;
                //If the load factor is relatively high (say >0.5 assuming sizeof(entry) == 2*sizeof(size_t)), it is more space efficient to keep a straight bucket array. But if the load factor is low, memory consumption would be lower if a pointer array of Entries is used here. But, because we would not be much concerned with a little additional memory being used when there are few entries, I think array of bucket objects is better. Further, it bypasses a pointer lookup. May have to reconsider is a situation where multiple hash tables are used (Perhaps as an array).
                bucket* a_Buckets;
                hash_container(const hash_container&);
                hash_container& operator=(const hash_container&);
                inline void calculateMultFactor() throw()
                {
                    d_MultFactor = 1.0f/static_cast<double>(sz_TableSize + 1);
                    //sz_NextResizeLimit = static_cast<size_t>(d_ExpectedLoadFactor*sz_TableSize);
                    //Have a look at this.
                    //TODO
                }
                void resize(size_t szNewSize) throw(std::bad_alloc)
                {
                    if(szNewSize == 0)
                    {
                        szNewSize = 1;
                    }
                    size_t szOldSize = sz_TableSize;
                    for(size_t szI = szNewSize; szI < szOldSize; ++szI)
                    {
                        a_Buckets[szI].~bucket();
                    }
                    a_Buckets = static_cast<bucket*>(realloc(a_Buckets, sizeof(bucket)*szNewSize));
                    if(a_Buckets == NULL)
                    {
                        throw std::bad_alloc();
                    }
                    //Unnecessary at the moment. But, just in case that bucket changes.
                    for(size_t szI = szOldSize; szI < szNewSize; ++szI)
                    {
                         new (&a_Buckets[szI]) bucket();
                    }
                    sz_TableSize = szNewSize;
                    calculateMultFactor();
                }
                inline bucket* get_bucket(const KEY& k) throw()
                {
                    return a_Buckets + _hf(k, sz_TableSize);
                }
                inline bool need_resizing() const throw()
                {
                }
            public:
                //typedef iterator void*;
                //typedef const_iterator void*;
                //iterator Insert(KEY& k, VALUE& v);
                //VALUE& Find(Key& k);
                //const VALUE& Find(Key& k);
                //iterator Find(KEY k);
                //const_iterator Find(KEY k);
                //void Delete(KEY& k);
                //void Delete(iterator it);
                //void Delete(const_iterator it);
                class iterator
                {
                    private:
                        entry* p_Entry;
                        bucket* p_Bucket;
                        friend class bucket;
                    public:
                        iterator(entry* pEntry)
                            :p_Entry(pEntry)
                        {
                        }
                        iterator()
                        {
                            p_Entry = NULL;
                        }
                        iterator(const iterator& it)
                        {
                            this->p_Entry = it.p_Entry;
                        }
                        inline VALUE& operator*() const
                        {
                            return p_Entry->_v;
                        }
                        inline bool operator==(const iterator& it) const
                        {
                            return this->p_Entry == it.p_Entry;
                        }
                        inline bool operator!=(const iterator& it) const
                        {
                            return !(*this == it);
                        }
                        inline iterator& operator=(const iterator& it)
                        {
                            this->p_Entry = it.p_Entry;
                        }
                        inline VALUE* operator->() const
                        {
                            return &p_Entry->_v;
                        }
                        inline iterator operator++()
                        {
                            return *this;
                        }
                        inline iterator& operator++(int)
                        {
                            //WRONG!!!
                            //TODO : Change this.
                            return *this;
                        }
                };
            private:
                iterator _EndIt;
            public:
                hash_container(HASH_FUNCTION& hf, size_t szTableSize = 1024, double dLoadFactor = 0.7f, KEY_COMP kc = KEY_COMP())throw(std::bad_alloc)
                    :_hf(hf), sz_TableSize(szTableSize), d_ExpectedLoadFactor(dLoadFactor), _kc(kc)
                {
                    if(d_ExpectedLoadFactor < 0.1f)
                    {
                        d_ExpectedLoadFactor = 0.1f;
                    }
                    a_Buckets = NULL;
                    sz_TableSize = 0;
                    if(szTableSize == 0)
                    {
                        szTableSize = 1;
                    }
                    resize(szTableSize);
                    d_CurrentLoadFactor = 0.0f;
                    sz_EntryCount = 0;
                    _EndIt = iterator(NULL);
                }
                virtual ~hash_container()
                {
                    for(size_t szI = 0; szI < sz_TableSize; ++szI)
                    {
                        a_Buckets[szI].~bucket();
                    }
                }
                inline iterator find(const KEY& k) throw()
                {
                    bucket* pBucket = get_bucket(k);
                    return pBucket->find(k);
                }
                inline bool insert(const KEY& k, const VALUE& v) throw(std::bad_alloc)
                {
                    bucket* pBucket = get_bucket(k);
                    bool bRet = false;
                    try
                    {
                        bRet = pBucket->insert(k, v);
                    }
                    catch(std::bad_alloc& e)
                    {
                        //What now?
                        throw e;
                    }
                    if(bRet == true)
                    {
                        ++sz_EntryCount;
                    }
                    return bRet;
                }
                inline VALUE& operator[](const KEY& k) throw(std::bad_alloc)
                {
                    bucket* pBucket = get_bucket(k);
                }
                inline bool erase(const KEY& k) throw(std::bad_alloc)
                {
                    bucket* pBucket =  get_bucket(k);
                    bool bRet = false;
                    try
                    {
                        bRet = pBucket->erase(k);
                    }
                    catch(std::bad_alloc& e)
                    {
                        throw e;
                    }
                    if(bRet == true)
                    {
                        --sz_EntryCount;
                    }
                    return bRet;
                }
                inline iterator end() const
                {
                    return _EndIt;
                }
                inline size_t size() const
                {
                    return sz_EntryCount;
                }
                inline size_t table_size() const
                {
                    return sz_TableSize;
                }
                inline double current_load_factor() const
                {
                    return d_MultFactor*static_cast<double>(sz_EntryCount);
                }
                inline double expected_load_factor() const
                {
                    return d_ExpectedLoadFactor;
                }
        };
}
#endif
对于迭代器类型,operator->如何重载?
不是。 运算符 - >只能在类类型上重载。
  如果你的意思是"How do I overload it to return an integer type". 
  那么答案是你不能。  operator->的结果本身是取消引用的,因此必须是一个指针类型(或者是一个具有重载操作符 - >())的类类型的对象(引用)。 
假设它是一个T类对象集合的迭代器,它应该返回什么值?
它会返回一个指向T的指针
struct Y { int a; };
std::vector<Y> plop(/* DATA TO INIT*/);
std::vector<Y>::iterator b = plop.begin();
b->a = 5; // here b.operator->() returns a pointer to Y object.
          // This is then used to access the element `a` of the Y object.
为什么operator ++()通过类T返回,而operator ++(int)通过类T返回?
  技术上他们可以返回任何东西。  但通常他们按照你的建议来实施。 
  这是因为这些方法的标准实施: 
class X
{
     public:
         // Simple one first. The pre-increment just increments the objects state.
         // It returns a reference to itself to be used in the expression.
         X& operator++()
         {
              /* Increment this object */
              return *this;
         }
         // Post Increment: This has to increment the current object.
         // But the value returned must have the value of the original object.
         //
         // The easy way to do this is to make a copy (that you return). The copy
         // has the original value but now is distinct from this. You can now use
         // pre-increment to increment this object and return the copy. Because
         // the copy was created locally you can not return by reference.
         X operator++(int)
         {
             X  copy(*this);
             ++(*this);
             return copy;
         }
};
我明白这两个代表前缀增量和后缀增量。 但为什么回报价值的差异?
请参阅上述代码中的评论。
  0.1。  operator->应该几乎总是返回一个指针类型。  在充当value_type T的迭代器时,它应该返回T* 。 
  在一些较罕见的情况下, operator->可能返回一个不同的类类型,它也有一个operator-> member函数。 
  0.2。  对于operator++任何一种形式必须返回都没有技术要求,但通常的约定使它们的行为最像内置的意义。 
class T {
public:
    // pre-increment
    T& operator++() { increment_me(); return *this; }
    // post-increment
    T operator++(int) { T copy(*this); increment_me(); return copy; }
    //...
};
  预增量表达式++x的内置含义首先递增该数字,然后将一个左值返回给递增的数字。  返回类型T&类似的作用。 
后增量表达式“x ++”的内置含义会增加变量,但会返回变量先前值的右值副本。 因此,大多数用户定义的重载都会返回原始值的副本(实际上可能永远不会成为参考)。
  operator->应该返回一个指向T型的指针(即T* )。 
  后缀增量必须返回值的一个副本,因为它执行增量但在使用该值之前。  前缀增量可以简单地在增加后返回*this 。 
简单的实现可能如下所示:
T T::operator++(int)
{
    T temp = *this;
    ++*this;
    return temp;
}
T& T::operator++()
{
    this->value += 1;
    return *this;
}
上一篇: Questions about operator overloading
下一篇: How to specify a "Custom Tool" for transforming a file in VS2010?
