Is it possible to make conditional inserts with Azure Table Storage
Is it possible to make a conditional insert with the Windows Azure Table Storage Service?
Basically, what I'd like to do is to insert a new row/entity into a partition of the Table Storage Service if and only if nothing changed in that partition since I last looked.
In case you are wondering, I have Event Sourcing in mind, but I think that the question is more general than that.
Basically I'd like to read part of, or an entire, partition and make a decision based on the content of the data. In order to ensure that nothing changed in the partition since the data was loaded, an insert should behave like normal optimistic concurrency: the insert should only succeed if nothing changed in the partition - no rows were added, updated or deleted.
Normally in a REST service, I'd expect to use ETags to control concurrency, but as far as I can tell, there's no ETag for a partition.
The best solution I can come up with is to maintain a single row/entity for each partition in the table which contains a timestamp/ETag and then make all inserts part of a batch consisting of the insert as well as a conditional update of this 'timestamp entity'. However, this sounds a little cumbersome and brittle.
Is this possible with the Azure Table Storage Service?
The view from a thousand feet
Might I share a small tale with you...
Once upon a time someone wanted to persist events for an aggregate (from Domain Driven Design fame) in response to a given command. This person wanted to ensure that an aggregate would only be created once and that any form of optimistic concurrency could be detected.
To tackle the first problem - that an aggregate should only be created once - he did an insert into a transactional medium that threw when a duplicate aggregate (or more accurately the primary key thereof) was detected. The thing he inserted was the aggregate identifier as primary key and a unique identifier for a changeset. A collection of events produced by the aggregate while processing the command, is what is meant by changeset here. If someone or something else beat him to it, he would consider the aggregate already created and leave it at that. The changeset would be stored beforehand in a medium of his choice. The only promise this medium must make is to return what has been stored as-is when asked. Any failure to store the changeset would be considered a failure of the whole operation.
To tackle the second problem - detection of optimistic concurrency in the further life-cycle of the aggregate - he would, after having written yet another changeset, update the aggregate record in the transactional medium if and only if nobody had updated it behind his back (ie compared to what he last read just before executing the command). The transactional medium would notify him if such a thing happened. This would cause him to restart the whole operation, rereading the aggregate (or changesets thereof) to make the command succeed this time.
Of course, now he had solved the writing problems, along came the reading problems. How would one be able to read all the changesets of an aggregate that made up its history? Afterall, he only had the last committed changeset associated with the aggregate identifier in that transactional medium. And so he decided to embed some metadata as part of each changeset. Among the meta data - which is not so uncommon to have as part of a changeset - would be the identifier of the previous last committed changeset. This way he could "walk the line" of changesets of his aggregate, like a linked list so to speak.
As an additional perk, he would also store the command message identifier as part of the metadata of a changeset. This way, when reading changesets, he could know in advance if the command he was about to execute on the aggregate was already part of its history.
All's well that ends well ...
PS
1. The transactional medium and changeset storage medium can be the same,
2. The changeset identifier MUST not be the command identifier,
3. Feel free to punch holes in the tale :-),
4. Although not directly related to Azure Table Storage, I've implemented the above tale successfully using AWS DynamoDB and AWS S3.
How about storing each event at "PartitionKey/RowKey" created based on AggregateId/AggregateVersion?where AggregateVersion is a sequential number based on how many events the aggregate already has.
This is very deterministic, so when adding a new event to the aggregate, you will make sure that you were using the latest version of it, because otherwise you'll get an error saying that the row for that partition already exists. At this time you can drop the current operation and retry, or try to figure out if you could merge the operation anyways if the new updates to the aggregate do not conflict to the operation you just did.
链接地址: http://www.djcxy.com/p/57318.html上一篇: Git:从远程获取特定对象
下一篇: 是否可以使用Azure表存储进行条件插入