我应该如何格式化R mlogit软件包的数据?

我正在使用R的mlogit软件包。

导入我的数据后使用:

t <-read.csv('junk.csv',header=TRUE, sep=",", dec=".")

并致电:

x <- mlogit.data(t,choice="D",shape="long",id.var="key",alt.var="altkey")

我收到以下错误:

Error in `row.names<-.data.frame`(`*tmp*`, value = c("1.1", "1.2", "1.3",  : 
  duplicate 'row.names' are not allowed
In addition: Warning message:
non-unique values when setting 'row.names': ‘1.1’, ‘1.2’, ‘1.3’, ‘1.4’, ‘1.5’, ‘1.6’

任何想法如何解决它?

我的数据在csv文件中以下列格式存在:

[junk.csv]

key,altkey,A,B,C,D
201005131,1,2.6,118.17,117,0
201005131,2,1.4,117.11,115,0
201005131,3,1.1,117.38,122,1
201005131,4,24.6,,122,0
201005131,5,48.6,91.90,122,0
201005131,6,59.8,,122,0
201005132,1,20.2,118.23,113,0
201005132,2,2.5,123.67,120,1
201005132,3,7.4,116.30,120,0
201005132,4,2.8,118.86,120,0
201005132,5,6.9,124.72,120,0
201005132,6,2.5,123.81,120,0
201005132,7,8.5,119.23,115,

我对mlogit经验是,它不是很宽容的数据不完全是它应该的。

就你的情况而言,我注意到第一个应答者有6个选择,而第二个应答者有7个选择。 如果您将数据格式化为每个响应者具有相同数量的替代方案,则mlogit.data函数可以工作:

dat <- read.table(sep=",",text="
key,altkey,A,B,C,D
201005131,1, 2.6,118.17,117,0
201005131,2,1.4,117.11,115,0
201005131,3,1.1,117.38,122,1
201005131,4,24.6,,122,0
201005131,5,48.6,91.90,122,0
201005131,6,59.8,,122,0
201005132,1,20.2,118.23,113,0
201005132,2,2.5,123.67,120,1
201005132,3,7.4,116.30,120,0
201005132,4,2.8,118.86,120,0
201005132,5,6.9,124.72,120,0
201005132,6,2.5,123.81,120,0
201005132,7,8.5,119.23,115,0
", header=TRUE)

对所有数据运行mlogit再现错误:

> mlogit.data(dat, choice="D", shape="long", id.var="key", alt.var="altkey")
Error in `row.names<-.data.frame`(`*tmp*`, value = c("1.1", "1.2", "1.3",  : 
  duplicate 'row.names' are not allowed
In addition: Warning message:
non-unique values when setting 'row.names': '1.1', '1.2', '1.3', '1.4', '1.5', '1.6' 

但是,删除第13行,即第7个替代方式的作用是:

> mlogit.data(dat[-13, ], choice="D", shape="long", id.var="key", alt.var="altkey")
          key altkey    A      B   C     D
1.1 201005131      1  2.6 118.17 117 FALSE
1.2 201005131      2  1.4 117.11 115 FALSE
1.3 201005131      3  1.1 117.38 122  TRUE
1.4 201005131      4 24.6     NA 122 FALSE
1.5 201005131      5 48.6  91.90 122 FALSE
1.6 201005131      6 59.8     NA 122 FALSE
2.1 201005132      1 20.2 118.23 113 FALSE
2.2 201005132      2  2.5 123.67 120  TRUE
2.3 201005132      3  7.4 116.30 120 FALSE
2.4 201005132      4  2.8 118.86 120 FALSE
2.5 201005132      5  6.9 124.72 120 FALSE
2.6 201005132      6  2.5 123.81 120 FALSE

当然,这不是很令人满意,因为它破坏了一些数据。 更好的解决方案是以mlogit()期望的格式构造数据,然后直接调用mlogit()

dat$key <- factor(as.numeric(as.factor(dat$key)))
dat$altkey <- as.factor(dat$altkey)
dat$D <- as.logical(dat$D)
row.names(dat) <- paste(dat$key, dat$altkey, sep = ".")

现在数据如下所示:

    key altkey    A      B   C     D
1.1   1      1  2.6 118.17 117 FALSE
1.2   1      2  1.4 117.11 115 FALSE
1.3   1      3  1.1 117.38 122  TRUE
1.4   1      4 24.6     NA 122 FALSE
1.5   1      5 48.6  91.90 122 FALSE
1.6   1      6 59.8     NA 122 FALSE
2.1   2      1 20.2 118.23 113 FALSE
2.2   2      2  2.5 123.67 120  TRUE
2.3   2      3  7.4 116.30 120 FALSE
2.4   2      4  2.8 118.86 120 FALSE
2.5   2      5  6.9 124.72 120 FALSE
2.6   2      6  2.5 123.81 120 FALSE
2.7   2      7  8.5 119.23 115 FALSE

你可以直接调用mlogit()

mlogit(D ~ A + B + C, dat, 
       chid.var = "key", 
       alt.var = "altkey", 
       choice = "D", 
       shape = "long")

结果:

Call:
mlogit(formula = D ~ A + B + C, data = dat, chid.var = "key",     alt.var = "altkey", choice = "D", shape = "long", method = "nr",     print.level = 0)

Coefficients:
2:(intercept)  3:(intercept)  4:(intercept)  5:(intercept)  6:(intercept)  
      10.7774         4.8129         5.2257       -17.2522        -7.7364  
7:(intercept)              A              B              C  
      10.0389         1.6010         2.7156         2.9888  

JohnP,

我认为你正在寻找的答案是maxabet。 它说:

“如果读者尝试使用R来计算第6章介绍的MLR,则可能会出现以下错误消息:

'row.names < - 。data.frame ...(某些数据之后)'错误'不允许复制'row.names'

这个错误是当前R版本(2011年4月发布)的一个问题。 只有在'行'(在我们的情况下为'跑者')在每场比赛中相同的情况下,MLR才会运行。 因此,其中一种方法是制作一些“假马”,以便每个种族都有14名选手。 读者可能会等待R来解决这个问题,或者尝试某种方式下载早期版本(我正在使用2.9.1),而不是制作虚拟跑步者。 “

所以我猜你可以使用旧版R或更好的版本,用虚拟值填充现有数据以完成每次比赛。 我会做的一件事就是为每场比赛添加一个“场地大小”的新变量。 通过投入假人,但在新列中拥有正确数量的跑步者应该注意任何场地大小的变化。

很明显,你得到的答案会与你正在阅读的书有所不同,但它会是一个良好的开始,以更好的限制:)

链接地址: http://www.djcxy.com/p/57651.html

上一篇: How should I format my data for the R mlogit package?

下一篇: Is there a way to show the current TFS workspace in Visual Studio?