Parsing XML with namespace in Python via 'ElementTree'

I have the following XML which I want to parse using Python's ElementTree :

<rdf:RDF xml:base="http://dbpedia.org/ontology/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns="http://dbpedia.org/ontology/">

    <owl:Class rdf:about="http://dbpedia.org/ontology/BasketballLeague">
        <rdfs:label xml:lang="en">basketball league</rdfs:label>
        <rdfs:comment xml:lang="en">
          a group of sports teams that compete against each other
          in Basketball
        </rdfs:comment>
    </owl:Class>

</rdf:RDF>

I want to find all owl:Class tags and then extract the value of all rdfs:label instances inside them. I am using the following code:

tree = ET.parse("filename")
root = tree.getroot()
root.findall('owl:Class')

Because of the namespace, I am getting the following error.

SyntaxError: prefix 'owl' not found in prefix map

I tried reading the document at http://effbot.org/zone/element-namespaces.htm but I am still not able to get this working since the above XML has multiple nested namespaces.

Kindly let me know how to change the code to find all the owl:Class tags.


ElementTree is not too smart about namespaces. You need to give the .find() , findall() and iterfind() methods an explicit namespace dictionary. This is not documented very well:

namespaces = {'owl': 'http://www.w3.org/2002/07/owl#'} # add more as needed

root.findall('owl:Class', namespaces)

Prefixes are only looked up in the namespaces parameter you pass in. This means you can use any namespace prefix you like; the API splits off the owl: part, looks up the corresponding namespace URL in the namespaces dictionary, then changes the search to look for the XPath expression {http://www.w3.org/2002/07/owl}Class instead. You can use the same syntax yourself too of course:

root.findall('{http://www.w3.org/2002/07/owl#}Class')

If you can switch to the lxml library things are better; that library supports the same ElementTree API, but collects namespaces for you in a .nsmap attribute on elements.


以下是如何使用lxml完成​​此操作,而不必对命名空间进行硬编码或为它们扫描文本(如Martijn Pieters所述):

from lxml import etree
tree = etree.parse("filename")
root = tree.getroot()
root.findall('owl:Class', root.nsmap)

Note : This is an answer useful for Python's ElementTree standard library without using hardcoded namespaces.

To extract namespace's prefixes and URI from XML data you can use ElementTree.iterparse function, parsing only namespace start events (start-ns):

>>> from io import StringIO
>>> from xml.etree import ElementTree
>>> my_schema = u'''<rdf:RDF xml:base="http://dbpedia.org/ontology/"
...     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
...     xmlns:owl="http://www.w3.org/2002/07/owl#"
...     xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
...     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
...     xmlns="http://dbpedia.org/ontology/">
... 
...     <owl:Class rdf:about="http://dbpedia.org/ontology/BasketballLeague">
...         <rdfs:label xml:lang="en">basketball league</rdfs:label>
...         <rdfs:comment xml:lang="en">
...           a group of sports teams that compete against each other
...           in Basketball
...         </rdfs:comment>
...     </owl:Class>
... 
... </rdf:RDF>'''
>>> my_namespaces = dict([
...     node for _, node in ElementTree.iterparse(
...         StringIO(my_schema), events=['start-ns']
...     )
... ])
>>> from pprint import pprint
>>> pprint(my_namespaces)
{'': 'http://dbpedia.org/ontology/',
 'owl': 'http://www.w3.org/2002/07/owl#',
 'rdf': 'http://www.w3.org/1999/02/22-rdf-syntax-ns#',
 'rdfs': 'http://www.w3.org/2000/01/rdf-schema#',
 'xsd': 'http://www.w3.org/2001/XMLSchema#'}

Then the dictionary can be passed as argument to the search functions:

root.findall('owl:Class', my_namespaces)
链接地址: http://www.djcxy.com/p/58794.html

上一篇: 如何在XML中指定名称空间和模式位置?

下一篇: 通过'ElementTree'在Python中用命名空间解析XML