如何创建一个函数装饰器链?

我如何在Python中创建两个可以执行以下操作的装饰器?

@makebold
@makeitalic
def say():
   return "Hello"

...应该返回:

"<b><i>Hello</i></b>"

我并没有试图在真正的应用程序中这样制作HTML ,只是试图理解装饰器和装饰器链接是如何工作的。


查看文档以查看装饰器的工作原理。 以下是您要求的内容:

def makebold(fn):
    def wrapped():
        return "<b>" + fn() + "</b>"
    return wrapped

def makeitalic(fn):
    def wrapped():
        return "<i>" + fn() + "</i>"
    return wrapped

@makebold
@makeitalic
def hello():
    return "hello world"

print hello() ## returns "<b><i>hello world</i></b>"

如果没有长时间的解释,请参阅Paolo Bergantino的回答。

装饰者基础

Python的函数是对象

为了理解装饰器,你必须首先理解函数是Python中的对象。 这具有重要的后果。 让我们看看为什么用一个简单的例子:

def shout(word="yes"):
    return word.capitalize()+"!"

print(shout())
# outputs : 'Yes!'

# As an object, you can assign the function to a variable like any other object 
scream = shout

# Notice we don't use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":

print(scream())
# outputs : 'Yes!'

# More than that, it means you can remove the old name 'shout',
# and the function will still be accessible from 'scream'

del shout
try:
    print(shout())
except NameError, e:
    print(e)
    #outputs: "name 'shout' is not defined"

print(scream())
# outputs: 'Yes!'

记住这一点。 我们很快会回头看看。

Python函数的另一个有趣属性是它们可以在另一个函数中定义!

def talk():

    # You can define a function on the fly in "talk" ...
    def whisper(word="yes"):
        return word.lower()+"..."

    # ... and use it right away!
    print(whisper())

# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk". 
talk()
# outputs: 
# "yes..."

# But "whisper" DOES NOT EXIST outside "talk":

try:
    print(whisper())
except NameError, e:
    print(e)
    #outputs : "name 'whisper' is not defined"*
    #Python's functions are objects

函数引用

好的,还在吗? 现在有趣的部分...

你已经看到这个函数是对象。 因此,功能:

  • 可以分配给一个变量
  • 可以在另一个函数中定义
  • 这意味着一个函数可以return另一个函数

    def getTalk(kind="shout"):
    
        # We define functions on the fly
        def shout(word="yes"):
            return word.capitalize()+"!"
    
        def whisper(word="yes") :
            return word.lower()+"...";
    
        # Then we return one of them
        if kind == "shout":
            # We don't use "()", we are not calling the function,
            # we are returning the function object
            return shout  
        else:
            return whisper
    
    # How do you use this strange beast?
    
    # Get the function and assign it to a variable
    talk = getTalk()      
    
    # You can see that "talk" is here a function object:
    print(talk)
    #outputs : <function shout at 0xb7ea817c>
    
    # The object is the one returned by the function:
    print(talk())
    #outputs : Yes!
    
    # And you can even use it directly if you feel wild:
    print(getTalk("whisper")())
    #outputs : yes...
    

    还有更多!

    如果你可以return一个函数,你可以传递一个参数作为参数:

    def doSomethingBefore(func): 
        print("I do something before then I call the function you gave me")
        print(func())
    
    doSomethingBefore(scream)
    #outputs: 
    #I do something before then I call the function you gave me
    #Yes!
    

    那么,你只需要了解装饰器所需的一切。 你会发现,装饰器是“包装器”,这意味着它们让你在它们装饰的函数前后执行代码,而不用修改函数本身。

    手工装饰

    你怎么做手动:

    # A decorator is a function that expects ANOTHER function as parameter
    def my_shiny_new_decorator(a_function_to_decorate):
    
        # Inside, the decorator defines a function on the fly: the wrapper.
        # This function is going to be wrapped around the original function
        # so it can execute code before and after it.
        def the_wrapper_around_the_original_function():
    
            # Put here the code you want to be executed BEFORE the original function is called
            print("Before the function runs")
    
            # Call the function here (using parentheses)
            a_function_to_decorate()
    
            # Put here the code you want to be executed AFTER the original function is called
            print("After the function runs")
    
        # At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
        # We return the wrapper function we have just created.
        # The wrapper contains the function and the code to execute before and after. It’s ready to use!
        return the_wrapper_around_the_original_function
    
    # Now imagine you create a function you don't want to ever touch again.
    def a_stand_alone_function():
        print("I am a stand alone function, don't you dare modify me")
    
    a_stand_alone_function() 
    #outputs: I am a stand alone function, don't you dare modify me
    
    # Well, you can decorate it to extend its behavior.
    # Just pass it to the decorator, it will wrap it dynamically in 
    # any code you want and return you a new function ready to be used:
    
    a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
    a_stand_alone_function_decorated()
    #outputs:
    #Before the function runs
    #I am a stand alone function, don't you dare modify me
    #After the function runs
    

    现在,你可能想,每次你打电话时a_stand_alone_functiona_stand_alone_function_decorated被称为替代。 这很简单,只需使用a_stand_alone_function返回的函数覆盖a_stand_alone_function my_shiny_new_decorator

    a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
    a_stand_alone_function()
    #outputs:
    #Before the function runs
    #I am a stand alone function, don't you dare modify me
    #After the function runs
    
    # That’s EXACTLY what decorators do!
    

    装饰者揭秘

    前面的示例使用装饰器语法:

    @my_shiny_new_decorator
    def another_stand_alone_function():
        print("Leave me alone")
    
    another_stand_alone_function()  
    #outputs:  
    #Before the function runs
    #Leave me alone
    #After the function runs
    

    是的,就是这么简单。 @decorator只是一个捷径:

    another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)
    

    装饰者只是装饰者设计模式的pythonic变体。 Python中嵌入了几种经典的设计模式以简化开发(如迭代器)。

    当然,你可以累积装饰者:

    def bread(func):
        def wrapper():
            print("</''''''>")
            func()
            print("<______/>")
        return wrapper
    
    def ingredients(func):
        def wrapper():
            print("#tomatoes#")
            func()
            print("~salad~")
        return wrapper
    
    def sandwich(food="--ham--"):
        print(food)
    
    sandwich()
    #outputs: --ham--
    sandwich = bread(ingredients(sandwich))
    sandwich()
    #outputs:
    #</''''''>
    # #tomatoes#
    # --ham--
    # ~salad~
    #<______/>
    

    使用Python装饰器语法:

    @bread
    @ingredients
    def sandwich(food="--ham--"):
        print(food)
    
    sandwich()
    #outputs:
    #</''''''>
    # #tomatoes#
    # --ham--
    # ~salad~
    #<______/>
    

    你设置装饰器的顺序问题:

    @ingredients
    @bread
    def strange_sandwich(food="--ham--"):
        print(food)
    
    strange_sandwich()
    #outputs:
    ##tomatoes#
    #</''''''>
    # --ham--
    #<______/>
    # ~salad~
    

    现在:回答这个问题...

    总而言之,你可以很容易地看到如何回答这个问题:

    # The decorator to make it bold
    def makebold(fn):
        # The new function the decorator returns
        def wrapper():
            # Insertion of some code before and after
            return "<b>" + fn() + "</b>"
        return wrapper
    
    # The decorator to make it italic
    def makeitalic(fn):
        # The new function the decorator returns
        def wrapper():
            # Insertion of some code before and after
            return "<i>" + fn() + "</i>"
        return wrapper
    
    @makebold
    @makeitalic
    def say():
        return "hello"
    
    print(say())
    #outputs: <b><i>hello</i></b>
    
    # This is the exact equivalent to 
    def say():
        return "hello"
    say = makebold(makeitalic(say))
    
    print(say())
    #outputs: <b><i>hello</i></b>
    

    你现在可以离开快乐,或者多一点点燃你的大脑,看看修饰器的高级用法。


    把装饰者带到下一个层次

    将参数传递给装饰函数

    # It’s not black magic, you just have to let the wrapper 
    # pass the argument:
    
    def a_decorator_passing_arguments(function_to_decorate):
        def a_wrapper_accepting_arguments(arg1, arg2):
            print("I got args! Look: {0}, {1}".format(arg1, arg2))
            function_to_decorate(arg1, arg2)
        return a_wrapper_accepting_arguments
    
    # Since when you are calling the function returned by the decorator, you are
    # calling the wrapper, passing arguments to the wrapper will let it pass them to 
    # the decorated function
    
    @a_decorator_passing_arguments
    def print_full_name(first_name, last_name):
        print("My name is {0} {1}".format(first_name, last_name))
    
    print_full_name("Peter", "Venkman")
    # outputs:
    #I got args! Look: Peter Venkman
    #My name is Peter Venkman
    

    装饰方法

    关于Python的一个很好的事情是方法和函数真的是一样的。 唯一的区别是方法期望他们的第一个参数是对当前对象( self )的引用。

    这意味着你可以用相同的方式为方法构建一个装饰器! 只要记住要考虑到self

    def method_friendly_decorator(method_to_decorate):
        def wrapper(self, lie):
            lie = lie - 3 # very friendly, decrease age even more :-)
            return method_to_decorate(self, lie)
        return wrapper
    
    
    class Lucy(object):
    
        def __init__(self):
            self.age = 32
    
        @method_friendly_decorator
        def sayYourAge(self, lie):
            print("I am {0}, what did you think?".format(self.age + lie))
    
    l = Lucy()
    l.sayYourAge(-3)
    #outputs: I am 26, what did you think?
    

    如果你制作的是通用装饰器 - 你可以应用任何函数或方法,不管它的参数是什么 - 然后就是使用*args, **kwargs

    def a_decorator_passing_arbitrary_arguments(function_to_decorate):
        # The wrapper accepts any arguments
        def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
            print("Do I have args?:")
            print(args)
            print(kwargs)
            # Then you unpack the arguments, here *args, **kwargs
            # If you are not familiar with unpacking, check:
            # http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
            function_to_decorate(*args, **kwargs)
        return a_wrapper_accepting_arbitrary_arguments
    
    @a_decorator_passing_arbitrary_arguments
    def function_with_no_argument():
        print("Python is cool, no argument here.")
    
    function_with_no_argument()
    #outputs
    #Do I have args?:
    #()
    #{}
    #Python is cool, no argument here.
    
    @a_decorator_passing_arbitrary_arguments
    def function_with_arguments(a, b, c):
        print(a, b, c)
    
    function_with_arguments(1,2,3)
    #outputs
    #Do I have args?:
    #(1, 2, 3)
    #{}
    #1 2 3 
    
    @a_decorator_passing_arbitrary_arguments
    def function_with_named_arguments(a, b, c, platypus="Why not ?"):
        print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))
    
    function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
    #outputs
    #Do I have args ? :
    #('Bill', 'Linus', 'Steve')
    #{'platypus': 'Indeed!'}
    #Do Bill, Linus and Steve like platypus? Indeed!
    
    class Mary(object):
    
        def __init__(self):
            self.age = 31
    
        @a_decorator_passing_arbitrary_arguments
        def sayYourAge(self, lie=-3): # You can now add a default value
            print("I am {0}, what did you think?".format(self.age + lie))
    
    m = Mary()
    m.sayYourAge()
    #outputs
    # Do I have args?:
    #(<__main__.Mary object at 0xb7d303ac>,)
    #{}
    #I am 28, what did you think?
    

    将参数传递给装饰器

    太棒了,现在你会怎么说将修饰符传递给装饰器本身?

    这可能会有些扭曲,因为装饰器必须接受一个函数作为参数。 因此,你不能将修饰函数的参数直接传递给装饰器。

    在急于解决问题之前,让我们先写一点提示:

    # Decorators are ORDINARY functions
    def my_decorator(func):
        print("I am an ordinary function")
        def wrapper():
            print("I am function returned by the decorator")
            func()
        return wrapper
    
    # Therefore, you can call it without any "@"
    
    def lazy_function():
        print("zzzzzzzz")
    
    decorated_function = my_decorator(lazy_function)
    #outputs: I am an ordinary function
    
    # It outputs "I am an ordinary function", because that’s just what you do:
    # calling a function. Nothing magic.
    
    @my_decorator
    def lazy_function():
        print("zzzzzzzz")
    
    #outputs: I am an ordinary function
    

    完全一样。 “ my_decorator ”被调用。 所以当你@my_decorator ,你告诉Python调用变量“ my_decorator ”标记的函数。

    这个很重要! 你给的标签可以直接指向装饰者 - 或不

    让我们变得邪恶。 ☺

    def decorator_maker():
    
        print("I make decorators! I am executed only once: "
              "when you make me create a decorator.")
    
        def my_decorator(func):
    
            print("I am a decorator! I am executed only when you decorate a function.")
    
            def wrapped():
                print("I am the wrapper around the decorated function. "
                      "I am called when you call the decorated function. "
                      "As the wrapper, I return the RESULT of the decorated function.")
                return func()
    
            print("As the decorator, I return the wrapped function.")
    
            return wrapped
    
        print("As a decorator maker, I return a decorator")
        return my_decorator
    
    # Let’s create a decorator. It’s just a new function after all.
    new_decorator = decorator_maker()       
    #outputs:
    #I make decorators! I am executed only once: when you make me create a decorator.
    #As a decorator maker, I return a decorator
    
    # Then we decorate the function
    
    def decorated_function():
        print("I am the decorated function.")
    
    decorated_function = new_decorator(decorated_function)
    #outputs:
    #I am a decorator! I am executed only when you decorate a function.
    #As the decorator, I return the wrapped function
    
    # Let’s call the function:
    decorated_function()
    #outputs:
    #I am the wrapper around the decorated function. I am called when you call the decorated function.
    #As the wrapper, I return the RESULT of the decorated function.
    #I am the decorated function.
    

    这里毫不奇怪。

    让我们做同样的事情,但跳过所有烦人的中间变量:

    def decorated_function():
        print("I am the decorated function.")
    decorated_function = decorator_maker()(decorated_function)
    #outputs:
    #I make decorators! I am executed only once: when you make me create a decorator.
    #As a decorator maker, I return a decorator
    #I am a decorator! I am executed only when you decorate a function.
    #As the decorator, I return the wrapped function.
    
    # Finally:
    decorated_function()    
    #outputs:
    #I am the wrapper around the decorated function. I am called when you call the decorated function.
    #As the wrapper, I return the RESULT of the decorated function.
    #I am the decorated function.
    

    让我们更短:

    @decorator_maker()
    def decorated_function():
        print("I am the decorated function.")
    #outputs:
    #I make decorators! I am executed only once: when you make me create a decorator.
    #As a decorator maker, I return a decorator
    #I am a decorator! I am executed only when you decorate a function.
    #As the decorator, I return the wrapped function.
    
    #Eventually: 
    decorated_function()    
    #outputs:
    #I am the wrapper around the decorated function. I am called when you call the decorated function.
    #As the wrapper, I return the RESULT of the decorated function.
    #I am the decorated function.
    

    嘿,你看到了吗? 我们用“ @ ”语法使用函数调用! :-)

    所以,回到带有参数的装饰器。 如果我们可以使用函数来动态生成装饰器,我们可以将参数传递给该函数,对吧?

    def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
    
        print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
    
        def my_decorator(func):
            # The ability to pass arguments here is a gift from closures.
            # If you are not comfortable with closures, you can assume it’s ok,
            # or read: https://stackoverflow.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
            print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
    
            # Don't confuse decorator arguments and function arguments!
            def wrapped(function_arg1, function_arg2) :
                print("I am the wrapper around the decorated function.n"
                      "I can access all the variablesn"
                      "t- from the decorator: {0} {1}n"
                      "t- from the function call: {2} {3}n"
                      "Then I can pass them to the decorated function"
                      .format(decorator_arg1, decorator_arg2,
                              function_arg1, function_arg2))
                return func(function_arg1, function_arg2)
    
            return wrapped
    
        return my_decorator
    
    @decorator_maker_with_arguments("Leonard", "Sheldon")
    def decorated_function_with_arguments(function_arg1, function_arg2):
        print("I am the decorated function and only knows about my arguments: {0}"
               " {1}".format(function_arg1, function_arg2))
    
    decorated_function_with_arguments("Rajesh", "Howard")
    #outputs:
    #I make decorators! And I accept arguments: Leonard Sheldon
    #I am the decorator. Somehow you passed me arguments: Leonard Sheldon
    #I am the wrapper around the decorated function. 
    #I can access all the variables 
    #   - from the decorator: Leonard Sheldon 
    #   - from the function call: Rajesh Howard 
    #Then I can pass them to the decorated function
    #I am the decorated function and only knows about my arguments: Rajesh Howard
    

    这里是:带参数的装饰器。 参数可以设置为变量:

    c1 = "Penny"
    c2 = "Leslie"
    
    @decorator_maker_with_arguments("Leonard", c1)
    def decorated_function_with_arguments(function_arg1, function_arg2):
        print("I am the decorated function and only knows about my arguments:"
               " {0} {1}".format(function_arg1, function_arg2))
    
    decorated_function_with_arguments(c2, "Howard")
    #outputs:
    #I make decorators! And I accept arguments: Leonard Penny
    #I am the decorator. Somehow you passed me arguments: Leonard Penny
    #I am the wrapper around the decorated function. 
    #I can access all the variables 
    #   - from the decorator: Leonard Penny 
    #   - from the function call: Leslie Howard 
    #Then I can pass them to the decorated function
    #I am the decorated function and only knows about my arguments: Leslie Howard
    

    正如你所看到的,你可以像使用这个技巧的任何函数一样将参数传递给装饰器。 如果你愿意*args, **kwargs你甚至可以使用*args, **kwargs 。 但是请记住装饰器只能调用一次 。 就在Python导入脚本时。 之后不能动态设置参数。 当你做“导入x”时, 该功能已经装饰好了 ,所以你不能改变任何东西。


    让我们练习:装饰装饰者

    好吧,作为奖励,我会给你一个片段,让任何装饰者接受一般的任何争论。 毕竟,为了接受参数,我们使用另一个函数创建了我们的装饰器。

    我们包装了装饰者。

    还有什么我们最近看到的包装函数?

    哦,是的,装饰者!

    让我们有一些乐趣,并为装饰者写一个装饰器:

    def decorator_with_args(decorator_to_enhance):
        """ 
        This function is supposed to be used as a decorator.
        It must decorate an other function, that is intended to be used as a decorator.
        Take a cup of coffee.
        It will allow any decorator to accept an arbitrary number of arguments,
        saving you the headache to remember how to do that every time.
        """
    
        # We use the same trick we did to pass arguments
        def decorator_maker(*args, **kwargs):
    
            # We create on the fly a decorator that accepts only a function
            # but keeps the passed arguments from the maker.
            def decorator_wrapper(func):
    
                # We return the result of the original decorator, which, after all, 
                # IS JUST AN ORDINARY FUNCTION (which returns a function).
                # Only pitfall: the decorator must have this specific signature or it won't work:
                return decorator_to_enhance(func, *args, **kwargs)
    
            return decorator_wrapper
    
        return decorator_maker
    

    它可以使用如下:

    # You create the function you will use as a decorator. And stick a decorator on it :-)
    # Don't forget, the signature is "decorator(func, *args, **kwargs)"
    @decorator_with_args 
    def decorated_decorator(func, *args, **kwargs): 
        def wrapper(function_arg1, function_arg2):
            print("Decorated with {0} {1}".format(args, kwargs))
            return func(function_arg1, function_arg2)
        return wrapper
    
    # Then you decorate the functions you wish with your brand new decorated decorator.
    
    @decorated_decorator(42, 404, 1024)
    def decorated_function(function_arg1, function_arg2):
        print("Hello {0} {1}".format(function_arg1, function_arg2))
    
    decorated_function("Universe and", "everything")
    #outputs:
    #Decorated with (42, 404, 1024) {}
    #Hello Universe and everything
    
    # Whoooot!
    

    我知道,最后一次你有这种感觉,是在听过一个人说:“在理解递归之前,你必须先理解递归”。 但现在,你不觉得掌握这个好吗?


    最佳实践:装饰者

  • 修饰器是在Python 2.4中引入的,因此请确保您的代码将在> = 2.4上运行。
  • 装饰者减慢函数调用。 记住这一点。
  • 您不能取消装饰功能。 (有创建可以被删除的修饰器的窍门,但是没有人使用它们。)所以一旦函数被修饰,它就会被修饰为所有的代码。
  • 装饰者包装功能,这可能会使他们难以调试。 (这从Python> = 2.5变得更好;见下文。)
  • functools模块是在Python 2.5中引入的。 它包含functools.wraps()函数,它将装饰函数的名称,模块和docstring复制到它的包装器中。

    (有趣的事实: functools.wraps()是一个装饰器!)

    # For debugging, the stacktrace prints you the function __name__
    def foo():
        print("foo")
    
    print(foo.__name__)
    #outputs: foo
    
    # With a decorator, it gets messy    
    def bar(func):
        def wrapper():
            print("bar")
            return func()
        return wrapper
    
    @bar
    def foo():
        print("foo")
    
    print(foo.__name__)
    #outputs: wrapper
    
    # "functools" can help for that
    
    import functools
    
    def bar(func):
        # We say that "wrapper", is wrapping "func"
        # and the magic begins
        @functools.wraps(func)
        def wrapper():
            print("bar")
            return func()
        return wrapper
    
    @bar
    def foo():
        print("foo")
    
    print(foo.__name__)
    #outputs: foo
    

    装饰者怎么会有用?

    现在最大的问题是:我可以使用装饰器来做什么?

    看起来很酷很强大,但一个实际的例子会很棒。 那么,有1000种可能性。 经典用途扩展了外部库(不能修改它)的函数行为,或者用于调试(因为它是暂时的,您不想修改它)。

    您可以使用它们以DRY的方式扩展多个功能,如下所示:

    def benchmark(func):
        """
        A decorator that prints the time a function takes
        to execute.
        """
        import time
        def wrapper(*args, **kwargs):
            t = time.clock()
            res = func(*args, **kwargs)
            print("{0} {1}".format(func.__name__, time.clock()-t))
            return res
        return wrapper
    
    
    def logging(func):
        """
        A decorator that logs the activity of the script.
        (it actually just prints it, but it could be logging!)
        """
        def wrapper(*args, **kwargs):
            res = func(*args, **kwargs)
            print("{0} {1} {2}".format(func.__name__, args, kwargs))
            return res
        return wrapper
    
    
    def counter(func):
        """
        A decorator that counts and prints the number of times a function has been executed
        """
        def wrapper(*args, **kwargs):
            wrapper.count = wrapper.count + 1
            res = func(*args, **kwargs)
            print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
            return res
        wrapper.count = 0
        return wrapper
    
    @counter
    @benchmark
    @logging
    def reverse_string(string):
        return str(reversed(string))
    
    print(reverse_string("Able was I ere I saw Elba"))
    print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))
    
    #outputs:
    #reverse_string ('Able was I ere I saw Elba',) {}
    #wrapper 0.0
    #wrapper has been used: 1x 
    #ablE was I ere I saw elbA
    #reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
    #wrapper 0.0
    #wrapper has been used: 2x
    #!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A
    

    当然,装饰者的好处是你可以在几乎任何东西上立即使用它们而不需要重写。 干,我说:

    @counter
    @benchmark
    @logging
    def get_random_futurama_quote():
        from urllib import urlopen
        result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
        try:
            value = result.split("<br><b><hr><br>")[1].split("<br><br><hr>")[0]
            return value.strip()
        except:
            return "No, I'm ... doesn't!"
    
    
    print(get_random_futurama_quote())
    print(get_random_futurama_quote())
    
    #outputs:
    #get_random_futurama_quote () {}
    #wrapper 0.02
    #wrapper has been used: 1x
    #The laws of science be a harsh mistress.
    #get_random_futurama_quote () {}
    #wrapper 0.01
    #wrapper has been used: 2x
    #Curse you, merciful Poseidon!
    

    Python本身提供了几个装饰器: propertystaticmethod等。

  • Django使用装饰器来管理缓存和查看权限。
  • 扭曲以伪造内联异步函数调用。
  • 这真的是一个大型的游乐场。


    或者,您可以编写一个工厂函数,该函数返回一个装饰器,该装饰器将装饰函数的返回值封装在传递给工厂函数的标记中。 例如:

    from functools import wraps
    
    def wrap_in_tag(tag):
        def factory(func):
            @wraps(func)
            def decorator():
                return '<%(tag)s>%(rv)s</%(tag)s>' % (
                    {'tag': tag, 'rv': func()})
            return decorator
        return factory
    

    这使您可以编写:

    @wrap_in_tag('b')
    @wrap_in_tag('i')
    def say():
        return 'hello'
    

    要么

    makebold = wrap_in_tag('b')
    makeitalic = wrap_in_tag('i')
    
    @makebold
    @makeitalic
    def say():
        return 'hello'
    

    就我个人而言,我会以不同的方式写出装饰者:

    from functools import wraps
    
    def wrap_in_tag(tag):
        def factory(func):
            @wraps(func)
            def decorator(val):
                return func('<%(tag)s>%(val)s</%(tag)s>' %
                            {'tag': tag, 'val': val})
            return decorator
        return factory
    

    这会产生:

    @wrap_in_tag('b')
    @wrap_in_tag('i')
    def say(val):
        return val
    say('hello')
    

    不要忘记装饰器语法是简写的构造:

    say = wrap_in_tag('b')(wrap_in_tag('i')(say)))
    
    链接地址: http://www.djcxy.com/p/591.html

    上一篇: How to make a chain of function decorators?

    下一篇: Is it possible to apply CSS to half of a character?