Exact Large Finite Field Linear Algebra Library (e.g. GF(2^128) / GF(2^256) )
The NTL library seems to work, using this (sorry I'm quite unable to program in C++) code
#include <NTL/GF2E.h>
#include <NTL/GF2EX.h>
#include <NTL/GF2X.h>
#include <NTL/GF2XFactoring.h>
NTL_CLIENT
int main()
{
GF2X P = BuildIrred_GF2X(256);
GF2E::init(P);
GF2E zero = GF2E::zero();
GF2E one;
GF2E r = random_GF2E();
GF2E r2 = random_GF2E();
conv(one, 1L);
cout << "Cardinality: " << GF2E::cardinality() << endl;
cout << "ZERO: " << zero << " --> " << IsZero(zero) << endl;
cout << "ONE: " << one << " --> " << IsOne(one) << endl;
cout << "1/r: " << 1/r << ", r * (1/r): " << (r * (1/r)) << endl;
cout << "1/r2: " << 1/r2 << ", r2 * (1/r2): " << (r2 * (1/r2)) << endl;
}
it seems to work, proof (output of this program):
Cardinality: 115792089237316195423570985008687907853269984665640564039457584007913129639936
ZERO: [] --> 1
ONE: [1] --> 1
1/r: [0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1], r * (1/r): [1]
1/r2: [1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1], r2 * (1/r2): [1]
Even inverting seems to work (scroll as right as possible in the output sample above) :-)
链接地址: http://www.djcxy.com/p/62980.html