用NLTK创建一个新的语料库

我认为我的标题的答案往往是去阅读文件,但我跑过NLTK书,但它没有给出答案。 我对python很陌生。

我有一堆.txt文件,我希望能够使用NLTK为语料库nltk_data提供的语料库nltk_data

我试过PlaintextCorpusReader但我无法超越:

>>>import nltk
>>>from nltk.corpus import PlaintextCorpusReader
>>>corpus_root = './'
>>>newcorpus = PlaintextCorpusReader(corpus_root, '.*')
>>>newcorpus.words()

我如何细分newcorpus使用PUNKT句子? 我尝试过使用punkt函数,但punkt函数无法读取PlaintextCorpusReader类?

你还可以引导我如何将分段数据写入文本文件?

编辑:这个问题有一次赏金,现在有第二次赏金。 查看赏金箱中的文字。


我认为PlaintextCorpusReader已经使用punkt分词器分割输入,至少如果您的输入语言是英语。

PlainTextCorpusReader的构造函数

def __init__(self, root, fileids,
             word_tokenizer=WordPunctTokenizer(),
             sent_tokenizer=nltk.data.LazyLoader(
                 'tokenizers/punkt/english.pickle'),
             para_block_reader=read_blankline_block,
             encoding='utf8'):

你可以给读者一个单词和句子标记nltk.data.LazyLoader('tokenizers/punkt/english.pickle') ,但是对于后者,默认情况下已经是nltk.data.LazyLoader('tokenizers/punkt/english.pickle')

对于单个字符串,将使用一个标记器,如下所述(这里解释,请参阅第5节中的punkt标记器)。

>>> import nltk.data
>>> text = """
... Punkt knows that the periods in Mr. Smith and Johann S. Bach
... do not mark sentence boundaries.  And sometimes sentences
... can start with non-capitalized words.  i is a good variable
... name.
... """
>>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
>>> tokenizer.tokenize(text.strip())

经过多年的研究,它是如何工作的,下面是最新的教程

如何创建一个文本文件目录的NLTK语料库?

主要想法是使用nltk.corpus.reader软件包。 如果您有英文文本文件的目录,最好使用PlaintextCorpusReader

如果你有一个如下所示的目录:

newcorpus/
         file1.txt
         file2.txt
         ...

只需使用这些代码行,就可以得到一个语料库:

import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader

corpusdir = 'newcorpus/' # Directory of corpus.

newcorpus = PlaintextCorpusReader(corpusdir, '.*')

注:PlaintextCorpusReader将使用默认nltk.tokenize.sent_tokenize()nltk.tokenize.word_tokenize()到你的文本拆分成句子和单词和这些功能都建立英语中,它可能不适用于所有语言。

以下是创建测试文本文件以及如何使用NLTK创建语料库以及如何在不同级别访问语料库的完整代码:

import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader

# Let's create a corpus with 2 texts in different textfile.
txt1 = """This is a foo bar sentence.nAnd this is the first txtfile in the corpus."""
txt2 = """Are you a foo bar? Yes I am. Possibly, everyone is.n"""
corpus = [txt1,txt2]

# Make new dir for the corpus.
corpusdir = 'newcorpus/'
if not os.path.isdir(corpusdir):
    os.mkdir(corpusdir)

# Output the files into the directory.
filename = 0
for text in corpus:
    filename+=1
    with open(corpusdir+str(filename)+'.txt','w') as fout:
        print>>fout, text

# Check that our corpus do exist and the files are correct.
assert os.path.isdir(corpusdir)
for infile, text in zip(sorted(os.listdir(corpusdir)),corpus):
    assert open(corpusdir+infile,'r').read().strip() == text.strip()


# Create a new corpus by specifying the parameters
# (1) directory of the new corpus
# (2) the fileids of the corpus
# NOTE: in this case the fileids are simply the filenames.
newcorpus = PlaintextCorpusReader('newcorpus/', '.*')

# Access each file in the corpus.
for infile in sorted(newcorpus.fileids()):
    print infile # The fileids of each file.
    with newcorpus.open(infile) as fin: # Opens the file.
        print fin.read().strip() # Prints the content of the file
print

# Access the plaintext; outputs pure string/basestring.
print newcorpus.raw().strip()
print 

# Access paragraphs in the corpus. (list of list of list of strings)
# NOTE: NLTK automatically calls nltk.tokenize.sent_tokenize and 
#       nltk.tokenize.word_tokenize.
#
# Each element in the outermost list is a paragraph, and
# Each paragraph contains sentence(s), and
# Each sentence contains token(s)
print newcorpus.paras()
print

# To access pargraphs of a specific fileid.
print newcorpus.paras(newcorpus.fileids()[0])

# Access sentences in the corpus. (list of list of strings)
# NOTE: That the texts are flattened into sentences that contains tokens.
print newcorpus.sents()
print

# To access sentences of a specific fileid.
print newcorpus.sents(newcorpus.fileids()[0])

# Access just tokens/words in the corpus. (list of strings)
print newcorpus.words()

# To access tokens of a specific fileid.
print newcorpus.words(newcorpus.fileids()[0])

最后,要阅读文本目录并用另一种语言创建一个NLTK语料库,首先必须确保您有一个Python可调用单词标记化句子标记化模块,它们接受字符串/碱基字符串输入并生成如下输出:

>>> from nltk.tokenize import sent_tokenize, word_tokenize
>>> txt1 = """This is a foo bar sentence.nAnd this is the first txtfile in the corpus."""
>>> sent_tokenize(txt1)
['This is a foo bar sentence.', 'And this is the first txtfile in the corpus.']
>>> word_tokenize(sent_tokenize(txt1)[0])
['This', 'is', 'a', 'foo', 'bar', 'sentence', '.']

 >>> import nltk
 >>> from nltk.corpus import PlaintextCorpusReader
 >>> corpus_root = './'
 >>> newcorpus = PlaintextCorpusReader(corpus_root, '.*')
 """
 if the ./ dir contains the file my_corpus.txt, then you 
 can view say all the words it by doing this 
 """
 >>> newcorpus.words('my_corpus.txt')
链接地址: http://www.djcxy.com/p/65153.html

上一篇: Creating a new corpus with NLTK

下一篇: Practical examples of NLTK use