What is the most efficient way to loop through dataframes with pandas?

I want to perform my own complex operations on financial data in dataframes in a sequential manner.

For example I am using the following MSFT CSV file taken from Yahoo Finance:

Date,Open,High,Low,Close,Volume,Adj Close
2011-10-19,27.37,27.47,27.01,27.13,42880000,27.13
2011-10-18,26.94,27.40,26.80,27.31,52487900,27.31
2011-10-17,27.11,27.42,26.85,26.98,39433400,26.98
2011-10-14,27.31,27.50,27.02,27.27,50947700,27.27

....

I then do the following:

#!/usr/bin/env python
from pandas import *

df = read_csv('table.csv')

for i, row in enumerate(df.values):
    date = df.index[i]
    open, high, low, close, adjclose = row
    #now perform analysis on open/close based on date, etc..

Is that the most efficient way? Given the focus on speed in pandas, I would assume there must be some special function to iterate through the values in a manner that one also retrieves the index (possibly through a generator to be memory efficient)? df.iteritems unfortunately only iterates column by column.


The newest versions of pandas now include a built-in function for iterating over rows.

for index, row in df.iterrows():

    # do some logic here

Or, if you want it faster use itertuples()

But, unutbu's suggestion to use numpy functions to avoid iterating over rows will produce the fastest code.


Pandas is based on NumPy arrays. The key to speed with NumPy arrays is to perform your operations on the whole array at once, never row-by-row or item-by-item.

For example, if close is a 1-d array, and you want the day-over-day percent change,

pct_change = close[1:]/close[:-1]

This computes the entire array of percent changes as one statement, instead of

pct_change = []
for row in close:
    pct_change.append(...)

So try to avoid the Python loop for i, row in enumerate(...) entirely, and think about how to perform your calculations with operations on the entire array (or dataframe) as a whole, rather than row-by-row.


You can loop through the rows by transposing and then calling iteritems:

for date, row in df.T.iteritems():
   # do some logic here

I am not certain about efficiency in that case. To get the best possible performance in an iterative algorithm, you might want to explore writing it in Cython, so you could do something like:

def my_algo(ndarray[object] dates, ndarray[float64_t] open,
            ndarray[float64_t] low, ndarray[float64_t] high,
            ndarray[float64_t] close, ndarray[float64_t] volume):
    cdef:
        Py_ssize_t i, n
        float64_t foo
    n = len(dates)

    for i from 0 <= i < n:
        foo = close[i] - open[i] # will be extremely fast

I would recommend writing the algorithm in pure Python first, make sure it works and see how fast it is-- if it's not fast enough, convert things to Cython like this with minimal work to get something that's about as fast as hand-coded C/C++.

链接地址: http://www.djcxy.com/p/70918.html

上一篇: 在pandas.DataFrame中添加一行

下一篇: 用熊猫循环数据框的最有效方式是什么?