Set value for particular cell in pandas DataFrame using index


I've created a pandas DataFrame

df=DataFrame(index=['A','B','C'], columns=['x','y'])

and got this

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN


Then I want to assign value to particular cell, for example for row 'C' and column 'x'. I've expected to get such result:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

with this code:

df.xs('C')['x']=10

but contents of df haven't changed. It's again only Nan's in dataframe.

Any suggestions?


RukTech's answer, df.set_value('C', 'x', 10) , is far and away faster than the options I've suggested below. However, it has been slated for deprecation .

Going forward, the recommended method is .iat/.at .


Why df.xs('C')['x']=10 does not work:

df.xs('C') by default, returns a new dataframe with a copy of the data, so

df.xs('C')['x']=10

modifies this new dataframe only.

df['x'] returns a view of the df dataframe, so

df['x']['C'] = 10

modifies df itself.

Warning : It is sometimes difficult to predict if an operation returns a copy or a view. For this reason the docs recommend avoiding assignments with "chained indexing".


So the recommended alternative is

df.at['C', 'x'] = 10

which does modify df .


In [18]: %timeit df.set_value('C', 'x', 10)
100000 loops, best of 3: 2.9 µs per loop

In [20]: %timeit df['x']['C'] = 10
100000 loops, best of 3: 6.31 µs per loop

In [81]: %timeit df.at['C', 'x'] = 10
100000 loops, best of 3: 9.2 µs per loop

Update: The .set_value method is going to be deprecated. .iat/.at are good replacements, unfortunately pandas provides little documentation


The fastest way to do this is using set_value. This method is ~100 times faster than .ix method. For example:

df.set_value('C', 'x', 10)


You can also use a conditional lookup using .loc as seen here:

df.loc[df[<some_column_name>] == <condition>, <another_column_name>] = <value_to_add>

where <some_column_name is the column you want to check the <condition> variable against and <another_column_name> is the column you want to add to (can be a new column or one that already exists). <value_to_add> is the value you want to add to that column/row.

This example doesn't work precisely with the question at hand, but it might be useful for someone wants to add a specific value based on a condition.

链接地址: http://www.djcxy.com/p/70924.html

上一篇: 更改Pandas中列的数据类型

下一篇: 使用索引为pandas DataFrame中的特定单元格设置值