Projecting Coordinates in Numpy array
So I have come across a rather large bottle neck in my software. I have a set of co-ordinates in cords
where each row corresponds to X,Y,Z
co-ordinates. Each co-ordinate in cords
has a defined area in atom_proj
. The atoms
variable corresponds to the cords
variable and provides the key to the atom_proj
.
I project the co-ordinates onto the grid
array then rotate and repeat until the number of rotations is satisfied. I only project the X and Z co-ordinates ignoring the Y.
I have simplified version of my code below. The code runs relatively quick for small co-ordinate sets and number of rotations. But can take a long time if both co-ordinate set and rotation list is large. The number of co-ordinates can vary from a few hundred to tens of thousands. I project the area on the grid
over a number or rotations to produce a heat map. An example of the heat map for a co-ordinate set is also shown below.
Question:
(i) - How can I decrease the projection time of the co-ordinates onto the matrix
(ii) - Is there a more pythonic way of applying the co-ordinate area to the grid
rather than array splicing?
import numpy as np
cords = np.array([[5,4,5],[5,4,3],[6,4,6]])
atoms = np.array([['C'],['H'],['C']])
atom_proj = {'H':np.array([[0,0,0,0,0],[0,0,1,0,0],[0,1,1,1,0],[0,0,1,0,0],[0,0,0,0,0]]),'C':np.array([[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,1,1,1,0,0],[0,0,1,1,1,0,0],[0,0,1,1,1,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0]])}
grid = np.zeros((10,10))
for rot in xrange(1,10):
# This for loop would contain a list of list of rotations to apply which are calculated before hand.
# apply rotation
for values in zip(cords, atoms):
atom_shape = np.shape(atom_proj[values[1][0]])
rad = (atom_shape[0]-1)/2
grid[values[0][2]-rad:values[0][2]+rad+1,values[0][0]-rad:values[0][0]+rad+1] += atom_proj[values[1][0]]
print grid
Heat map:
Something like this should work for the inner loop
extruded = np.zeros((N, 10,10))
extruded[range(N), cords[:,2], cords[:,0]] = 1
grid = np.zeros((10,10))
for atom, proj in atom_proj.iteritems():
centers = extruded[atoms==atom].sum(0)
projected = nd.convolve(centers, proj)
grid += projected
A couple notes:
2
array of atom types, not the length- N
array of individual atoms. for rot in []
loop, since it wasn't doing anything here, but it should fit back in just fine. atoms
is 1d, yours is 2d. Not sure if this was on purpose or not. OP_simplified
Here's the full suite:
import numpy as np
import scipy.ndimage as nd
N = 1000
cords = np.random.randint(3, 7, (N, 3)) #np.array([[5,4,5],[5,4,3],[6,4,6]])
atoms = np.random.choice(list('HC'), N) #np.array([['C'],['H'],['C']])
atom_proj = {'H': np.array([[0,0,0,0,0],
[0,0,1,0,0],
[0,1,1,1,0],
[0,0,1,0,0],
[0,0,0,0,0]]),
'C': np.array([[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,1,1,1,0,0],
[0,0,1,1,1,0,0],
[0,0,1,1,1,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0]])}
def project_atom(cords, atoms, atom_proj):
extruded = np.zeros((N, 10,10))
extruded[range(N), cords[:,2], cords[:,0]] = 1
grid = np.zeros((10,10))
for atom, proj in atom_proj.iteritems():
grid += nd.convolve(extruded[atoms.squeeze()==atom].sum(0), proj, mode='constant')
return grid
def OP_simplified(cords, atoms, atom_proj):
rads = {atom: (proj.shape[0] - 1)/2 for atom, proj in atom_proj.iteritems()}
grid = np.zeros((10,10))
for (x,y,z), atom in zip(cords, atoms):
rad = rads[atom]
grid[z-rad:z+rad+1, x-rad:x+rad+1] += atom_proj[atom]
return grid
def OP(cords, atoms, atom_proj):
grid = np.zeros((10,10))
for values in zip(cords, atoms):
atom_shape = np.shape(atom_proj[values[1][0]])
rad = (atom_shape[0]-1)/2
grid[values[0][2]-rad:values[0][2]+rad+1,values[0][0]-rad:values[0][0]+rad+1] += atom_proj[values[1][0]]
return grid
It works!
In [957]: np.allclose(OP(cords, atoms, atom_proj), project_atom(cords, atoms, atom_proj))
Out[957]: True
And timing:
In [907]: N = 1000
In [910]: timeit OP(cords, atoms, atom_proj)
10 loops, best of 3: 30.7 ms per loop
In [911]: timeit project_atom(cords, atoms, atom_proj)
100 loops, best of 3: 2.97 ms per loop
In [913]: N = 10000
In [916]: timeit project_atom(cords, atoms, atom_proj)
10 loops, best of 3: 33.3 ms per loop
In [917]: timeit OP(cords, atoms, atom_proj)
1 loops, best of 3: 314 ms per loop
链接地址: http://www.djcxy.com/p/75386.html
上一篇: 如何从侧面折叠bootstrap导航栏
下一篇: 在Numpy数组中投影坐标