快速搜索排序向量中大于x的最小值
快速意味着比O(N)更好,这与find()能够达到的一样好。 我知道ismembc
和ismembc2
,但我不认为他们都是我正在寻找的。 我阅读文档,似乎他们搜索一个等于x的成员,但我希望第一个值的索引大于x。
现在,如果这些功能中的任何一个都能够做到这一点,有人可以举个例子,因为我无法弄清楚。
理想的行为:
first_greater_than([0, 3, 3, 4, 7], 1)
返回2,第一个值的索引大于1,但显然输入数组将会大得多。
当然,二分查找并不是很难实现,但如果MATLAB已经完成了,我宁愿使用他们的方法。
由于输入已经排序,所以自定义的二进制搜索应该可以工作(您可能需要对边缘情况进行一些更新,即请求的值小于数组的所有元素):
function [result, res2] = binarySearchExample(val)
%// Generate example data and sort it
N = 100000000;
a = rand(N, 1);
a = sort(a);
%// Run the algorithm
tic % start timing of the binary search algorithm
div = 1;
idx = floor(N/div);
while(1)
div = div * 2;
%// Check if less than val check if the next is greater
if a(idx) <= val,
if a(idx + 1) > val,
result = a(idx + 1);
break
else %// Get bigger
idx = idx + max([floor(N / div), 1]);
end
end
if a(idx) > val, % get smaller
idx = idx - floor(N / div);
end
end % end the while loop
toc % end timing of the binary search algorithm
%% ------------------------
%% compare to MATLAB find
tic % start timing of a matlab find
j = find(a > val, 1);
res2 = a(j);
toc % end timing of a matlab find
%// Benchmark
>> [res1, res2] = binarySearchExample(0.556)
Elapsed time is 0.000093 seconds.
Elapsed time is 0.327183 seconds.
res1 =
0.5560
res2 =
0.5560
这是我的实现。 这不是我正在寻找的答案,但现在,我将不得不假设我以后没有在MATLAB中实现。
关于指数的说明
所有的MATLAB索引都做错了,因为它们从1开始,而不是从0开始。尽管如此,我仍然从0开始索引。 因此,在整个过程中,您将看到如下所示的索引: array(1+i)
访问元素i,其中i在[0,N)中。 此外,所有的MATLAB范围都做错了。 他们的惯例是[a,b],而不是[a,b]。 所以你会看到整个范围看起来像这样:0:N-1是从0到N的数字范围(通常是N维数组的索引)。当数组使用范围索引时,必须进行两次校正与此同时。 1被添加到顶部和底部边界,1从顶部被减去。 这是结果:array(1 + a:b)访问[a,b)中的元素,其中a和b位于[0,N)且b> a。 我应该真的只是使用python和scipy,但现在已经太迟了。 下一个项目...
binary_search.m:在我看来,它比@ ljk07的实现更加整洁,但当然它们仍然得到接受。 谢谢,@ ljk07。
function i = binary_search(v, x)
%binary_search finds the first element in v greater than x
% v is a vector and x is a double. Returns the index of the desired element
% as an int64 or -1 if it doesn't exist.
% We'll call the first element of v greater than x v_f.
% Is v_f the zeroth element? This is technically covered by the algorithm,
% but is such a common case that it should be addressed immediately. It
% would otherwise take the same amount of time as the rest of them. This
% will add a check to each of the others, though, so it's a toss-up to an
% extent.
if v(1+0) > x
i = 0;
return;
end
% MATLAB foolishly returns the number of elements as a floating point
% constant. Thank you very much, MATLAB.
b = int64(numel(v));
% If v_f doesn't exist, return -1. This is also needed to ensure the
% algorithm later on terminates, which makes sense.
if v(1+b-1) <= x
i = -1;
return;
end
a = int64(0);
% There is now guaranteed to be more than one element, since if there
% wasn't, one of the above would have matched. So we split the [a, b) range
% at the top of the loop.
% The number of elements in the interval. Calculated once per loop. It is
% recalculated at the bottom of the loop, so it needs to be calculated just
% once before the loop can begin.
n = b;
while true
% MATLAB's / operator foolishly rounds to nearest instead of flooring
% when both inputs are integers. Thank you very much, MATLAB.
p = a + idivide(n, int64(2));
% Is v_f in [a, p) or [p, b)?
if v(1+p-1) > x
% v_f is in [a, p).
b = p;
else
% v_f is in [p, b).
a = p;
end
n = b - a;
if n == 1
i = a;
return;
end
end
end
binary_search_test.m:
% Some simple tests. These had better pass...
assert(binary_search([0], 0) == -1);
assert(binary_search([0], -1) == 0);
assert(binary_search([0 1], 0.5) == 1);
assert(binary_search([0 1 1], 0.5) == 1);
assert(binary_search([0 1 2], 0.5) == 1);
assert(binary_search([0 1 2], 1.5) == 2);
% Compare the algorithm to internal find.
for n = [1 1:8]
n
v = sort(rand(10^n, 1));
x = 0.5;
%%
tic;
ifind = find(v > x, 1,'first') - 1;
toc;
% repeat. The second time is faster usually. Some kind of JIT
% optimisation...
tic;
ifind = find(v > x, 1,'first') - 1;
toc;
tic;
ibs = binary_search(v, x);
toc;
tic;
ibs = binary_search(v, x);
toc;
assert(ifind == ibs);
end
binary_search_test.m的输出 (在我的电脑上):
n =
1
Elapsed time is 0.000054 seconds.
Elapsed time is 0.000021 seconds.
Elapsed time is 0.001273 seconds.
Elapsed time is 0.001135 seconds.
n =
2
Elapsed time is 0.000050 seconds.
Elapsed time is 0.000018 seconds.
Elapsed time is 0.001571 seconds.
Elapsed time is 0.001494 seconds.
n =
3
Elapsed time is 0.000034 seconds.
Elapsed time is 0.000025 seconds.
Elapsed time is 0.002344 seconds.
Elapsed time is 0.002193 seconds.
n =
4
Elapsed time is 0.000057 seconds.
Elapsed time is 0.000044 seconds.
Elapsed time is 0.003131 seconds.
Elapsed time is 0.003031 seconds.
n =
5
Elapsed time is 0.000473 seconds.
Elapsed time is 0.000333 seconds.
Elapsed time is 0.003620 seconds.
Elapsed time is 0.003161 seconds.
n =
6
Elapsed time is 0.003984 seconds.
Elapsed time is 0.003635 seconds.
Elapsed time is 0.004209 seconds.
Elapsed time is 0.003825 seconds.
n =
7
Elapsed time is 0.034811 seconds.
Elapsed time is 0.039106 seconds.
Elapsed time is 0.005089 seconds.
Elapsed time is 0.004867 seconds.
n =
8
Elapsed time is 0.322853 seconds.
Elapsed time is 0.323777 seconds.
Elapsed time is 0.005969 seconds.
Elapsed time is 0.005487 seconds.
肯定有加速。 在我的电脑上,你可以看到加速度达到了一百万元左右。 因此,除非在C中实现binary_search,或者您有一个包含大约百万个元素的向量,否则即使使用了一个愚蠢的算法,查找仍然更快。 我预计门槛将低于这个水平。 我的猜测是,因为查找大部分是在C中内部实现的。不公平:(但是,对于我的特定应用程序,我的矢量大小只有大约一千个,所以毕竟,对我来说真的是更快。至少直到那天我用mex文件在C语言中实现binary_search,或者切换到scipy,无论哪个先发生,我都厌倦了MATLAB的小小的不方便的切换,你可以通过阅读我的代码中的注释来判断。
链接地址: http://www.djcxy.com/p/76073.html上一篇: Fast searching for the lowest value greater than x in a sorted vector