如何编写多参数日志
我想估计以下问题的力量。 我有兴趣比较两个都遵循Weibull分布的团队。 因此,A组有两个参数(shape par = a1,scale par = b1)和两个参数组B(a2,b2)。 通过模拟感兴趣分布的随机变量(例如,假设不同的尺度和形状参数,即a1 = 1.5 * a2和b1 = b2 * 0.5;或者组之间的差异仅在任一形状或尺度参数中)似然比检验来检验a1 = a2和b1 = b2(或者例如a1 = a1,当我们知道b1 = b2时),并估计检验的功效。
问题是什么是完整模型的对数似然,以及如何在a)具有精确数据时,以及b)针对区间数据删除数据时,如何在R中对其进行编码?
也就是说,对于简化模型(当a1 = a2,b1 = b2时)精确和区间删失数据的对数似然值为:
LL.reduced.exact <- function(par,data){sum(log(dweibull(data,shape=par[1],scale=par[2])))};
LL.reduced.interval.censored<-function(par, data.lower, data.upper) {sum(log((1-pweibull(data.lower, par[1], par[2])) – (1-pweibull(data.upper, par[1],par[2]))))}
考虑到两种不同的观测方案,即当必须估计4个参数时(或者在有兴趣查看形状参数的差异的情况下),完整模型是什么,当a1!= a2,b1!= b2时, 3个参数必须估计)?
是否有可能估计它为不同的团体购买两个对数似然值并将它们加在一起(即LL.full <-LL.group1 + LL.group2 )?
关于区间删失数据的对数似然性,截尾是非信息性的,所有观测值都是区间删失的。 任何更好的想法如何执行这项任务将不胜感激。
请找到下面的确切数据的R代码来说明问题。 非常感谢你提前。
R Code:
# n (sample size) = 500
# sim (number of simulations) = 1000
# alpha = .05
# Parameters of Weibull distributions:
#group 1: a1=1, b1=20
#group 2: a2=1*1.5 b2=b1
n=500
sim=1000
alpha=.05
a1=1
b1=20
a2=a1*1.5
b2=b1
#OR: a1=1, b1=20, a2=a1*1.5, b2=b1*0.5
# the main question is how to build this log-likelihood model, when a1!=a2, and b1=b2
# (or a1!=a2, and b1!=b2)
LL.full<-?????
LL.reduced <- function(par,data){sum(log(dweibull(data,shape=par[1],scale=par[2])))}
LR.test<-function(red,full,df) {
lrt<-(-2)*(red-full)
pvalue<-1-pchisq(lrt,df)
return(data.frame(lrt,pvalue))
}
rejections<-NULL
for (i in 1:sim) {
RV1<-rweibull (n, a1, b1)
RV2<-rweibull (n, a2, b2)
RV.Total<-c(RV1, RV2)
par.start<-c(1, 15)
mle.full<- ????????????
mle.reduced<-optim(par.start, LL, data=RV.Total, control=list(fnscale=-1))
LL.full<-?????
LL.reduced<-mle.reduced$value
LRT<-LR.test(LL.reduced, LL.full, 1)
rejections1<-ifelse(LRT$pvalue<alpha,1,0)
rejections<-c(rejections, rejections1)
}
table(rejections)
sum(table(rejections)[[2]])/sim # estimated power
是的,你可以将两组的对数似然值相加(如果它们是分开计算的话)。 就像你会总结一个观测向量的对数似然值,其中每个观测值具有不同的生成参数。
我更喜欢用一个大的矢量(即形状参数)来考虑,它包含根据协变量结构而变化的值(即组成员资格)。 在线性模型的情况下,这个向量可以等于线性预测器(一旦由链接函数适当地变换):设计矩阵的点积和回归系数的向量。
这是一个(非功能化)的例子:
## setup true values
nobs = 50 ## number of observations
a1 = 1 ## shape for first group
b1 = 2 ## scale parameter for both groups
beta = c(a1, a1 * 1.5) ## vector of linear coefficients (group shapes)
## model matrix for full, null models
mm_full = cbind(grp1 = rep(c(1,0), each = nobs), grp2 = rep(c(0,1), each = nobs))
mm_null = cbind(grp1 = rep(1, nobs*2))
## shape parameter vector for the full, null models
shapes_full = mm_full %*% beta ## different shape parameters by group (full model)
shapes_null = mm_null %*% beta[1] ## same shape parameter for all obs
scales = rep(b1, length(shapes_full)) ## scale parameters the same for both groups
## simulate response from full model
response = rweibull(length(shapes_full), shapes_full, scales)
## the log likelihood for the full, null models:
LL_full = sum(dweibull(response, shapes_full, scales, log = T))
LL_null = sum(dweibull(response, shapes_null, scales, log = T))
## likelihood ratio test
LR_test = function(LL_null, LL_full, df) {
LR = -2 * (LL_null - LL_full) ## test statistic
pchisq(LR, df = df, ncp = 0, lower = F) ## probability of test statistic under central chi-sq distribution
}
LR_test(LL_null, LL_full, 1) ## 1 degrees freedom (1 parameter added)
为了编写对数似然函数来寻找Weibull模型的MLE,其中形状参数是协变量的一些线性函数,可以使用相同的方法:
## (negative) log-likelihood function
LL_weibull = function(par, data, mm, inv_link_fun = function(.) .){
P = ncol(mm) ## number of regression coefficients
N = nrow(mm) ## number of observations
shapes = inv_link_fun(mm %*% par[1:P]) ## shape vector (possibly transformed)
scales = rep(par[P+1], N) ## scale vector
-sum(dweibull(data, shape = shapes, scale = scales, log = T)) ## negative log likelihood
}
然后你的力量模拟可能看起来像这样:
## function to simulate data, perform LRT
weibull_sim = function(true_shapes, true_scales, mm_full, mm_null){
## simulate response
response = rweibull(length(true_shapes), true_shapes, true_scales)
## find MLE
mle_full = optim(par = rep(1, ncol(mm_full)+1), fn = LL_weibull, data = response, mm = mm_full)
mle_null = optim(par = rep(1, ncol(mm_null)+1), fn = LL_weibull, data = response, mm = mm_null)
## likelihood ratio test
df = ncol(mm_full) - ncol(mm_null)
return(LR_test(-mle_null$value, -mle_full$value, df))
}
## run simulations
nsim = 1000
pvals = sapply(1:nsim, function(.) weibull_sim(shapes_full, scales, mm_full, mm_null) )
## calculate power
alpha = 0.05
power = sum(pvals < alpha) / nsim
在上面的例子中,身份链接正常工作,但对于更复杂的模型,可能需要某种转换。
而且你不必使用线性代数的数似然函数-显然,你可以构造形状的载体,你认为合适的任何方式(只要你明确的指标,向量中的相应参数生成par
)。
区间检查数据
Weibull分布(R中的pweibull
)的累积分布函数F(T)给出了时间T之前的失败概率。因此,如果观察值是时间T [0]和T [1]之间的区间截尾,那么对象在T [0]和T [1]之间失败的概率是F(T [1]) - F(T [0]):T [1]之前对象失败的概率减去T [0] ](T [0]和T [1]之间的PDF的积分)。 由于Weibull CDF已经在R中实现,所以修改上面的似然函数是微不足道的:
LL_ic_weibull <- function(par, data, mm){
## 'data' has two columns, left and right times of censoring interval
P = ncol(mm) ## number of regression coefficients
shapes = mm %*% par[1:P]
scales = par[P+1]
-sum(log(pweibull(data[,2], shape = shapes, scale = scales) - pweibull(data[,1], shape = shapes, scale = scales)))
}
或者,如果您不想使用模型矩阵等,只是限制自己按组编制索引形状参数向量,则可以执行如下操作:
LL_ic_weibull2 <- function(par, data, nobs){
## 'data' has two columns, left and right times of censoring interval
## 'nobs' is a vector that contains the num. observations for each group (grp1, grp2, ...)
P = length(nobs) ## number of regression coefficients
shapes = rep(par[1:P], nobs)
scales = par[P+1]
-sum(log(pweibull(data[,2], shape = shapes, scale = scales) - pweibull(data[,1], shape = shapes, scale = scales)))
}
测试这两个函数给出了相同的解决方案:
## generate intervals from simulated response (above)
left = ifelse(response - 0.2 < 0, 0, response - 0.2)
right = response + 0.2
response_ic = cbind(left, right)
## find MLE w/ first LL function (model matrix)
mle_ic_full = optim(par = c(1,1,3), fn = LL_ic_weibull, data = response_ic, mm = mm_full)
mle_ic_null = optim(par = c(1,3), fn = LL_ic_weibull, data = response_ic, mm = mm_null)
## find MLE w/ second LL function (groups only)
nobs_per_group = apply(mm_full, 2, sum) ## just contains number of observations per group
nobs_one_group = nrow(mm_null) ## one group so only one value
mle_ic_full2 = optim(par = c(1,1,3), fn = LL_ic_weibull2, data = response_ic, nobs = nobs_per_group)
mle_ic_null2 = optim(par = c(1,3), fn = LL_ic_weibull2, data = response_ic, nobs = nobs_one_group)
链接地址: http://www.djcxy.com/p/76449.html