Detecting multiple images in a single image

I need help to identify the border and compare the images with the original image. I need guidance on How can I achieve this through processing or matlab or anything for beginner. for example look at the image below.

Original Image:

在这里输入图像描述

The Multiple Image: 放大图像


The "multiple image" you showed is easy enough to handle using just simple image processing, no need for template matching :)

% read the second image
img2 = imread('http://i.stack.imgur.com/zyHuj.jpg');
img2 = im2double(rgb2gray(img2));

% detect coca-cola logos
bw = im2bw(img2);                                       % Otsu's thresholding
bw = imfill(~bw, 'holes');                              % fill holes
stats = regionprops(bw, {'Centroid', 'BoundingBox'});   % connected components

% show centers and bounding boxes of each connected component
centers = vertcat(stats.Centroid);
imshow(img2), hold on
plot(centers(:,1), centers(:,2), 'LineStyle','none', ...
    'Marker','x', 'MarkerSize',20, 'Color','r', 'LineWidth',3)
for i=1:numel(stats)
    rectangle('Position',stats(i).BoundingBox, ...
        'EdgeColor','g', 'LineWidth',3)
end
hold off

在这里输入图像描述


You can use correlation method to position the multiple images:

file1='http://i.stack.imgur.com/1KyJA.jpg';
file2='http://i.stack.imgur.com/zyHuj.jpg';
It = imread(file1);
Ii = imread(file2);
It=rgb2gray(It);
Ii=rgb2gray(Ii);
It=double(It);  % template
Ii=double(Ii);  % image

Ii_mean = conv2(Ii,ones(size(It))./numel(It),'same');
It_mean = mean(It(:));
corr_1 = conv2(Ii,rot90(It-It_mean,2),'same')./numel(It);
corr_2 = Ii_mean.*sum(It(:)-It_mean);
conv_std = sqrt(conv2(Ii.^2,ones(size(It))./numel(It),'same')-Ii_mean.^2);
It_std = std(It(:));
S = (corr_1-corr_2)./(conv_std.*It_std);

imagesc(abs(S))

The result will give you the positions with maximum values:

在这里输入图像描述

Get the coordinates of maxima, and position your template centroid at the same position, check the difference between your template and the matching image.

I am not sure what do you mean by "identify the border", but you can always extract the edges with canny detector:

bw=edge(It);
bw=imfill(bw,'holes');
figure,imshow(bw)

Below is presented a solution implemented in Java, using Marvin image processing framework.

Approach:

  • Load, segment and scale (50x50) the logo in the "original image".
  • Load, segment and scale (50x50) each logo in the "multiple image"
  • For each logo in "mulitple image", compare with the logo in "original image". If it is almost the same, draw a rect to highlight.
  • Comparison method (inside diff plug-in):

    For each pixel in two logos, compare each color component. If the difference in one color component is higher then a given threshold, consider that pixel different for the two logos. Compute the total number of different pixels. If two logos have a number of different pixels higher than another threshold, consider them different. IMPORTANT: This approach is very sensitive to rotation and perspective variation.

    Since your sample ("multiple image") has only coca logos, I took the liberty to include another logo in order to assert the algorithm.

    The Multiple Image 2

    在这里输入图像描述

    Output

    在这里输入图像描述

    In another test, I've included two another similar coca logos. Changing the threshold parameters you can specify whether you want the exact same logo or accept its variations. In the result below, the parameters were set to accept logo variations.

    The Multiple Image 3

    在这里输入图像描述

    Output

    在这里输入图像描述

    Source code

    public class Logos {
    
    private MarvinImagePlugin threshold = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.color.thresholding");
    private MarvinImagePlugin fill = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.fill.boundaryFill");
    private MarvinImagePlugin scale = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.transform.scale");
    private MarvinImagePlugin diff = MarvinPluginLoader.loadImagePlugin("org.marvinproject.image.difference.differenceColor");
    
    public Logos(){
    
        // 1. Load, segment and scale the object to be found
        MarvinImage target = segmentTarget();
    
        // 2. Load the image with multiple objects
        MarvinImage original = MarvinImageIO.loadImage("./res/logos/logos.jpg");
        MarvinImage image = original.clone();
    
        // 3. Segment
        threshold.process(image, image);
        MarvinImage image2 = new MarvinImage(image.getWidth(), image.getHeight());
        fill(image, image2);
        MarvinImageIO.saveImage(image2, "./res/logos/logos_fill.jpg");
    
        // 4. Filter segments by its their masses
        LinkedHashSet<Integer> objects = filterByMass(image2, 10000);
        int[][] rects = getRects(objects, image2, original);
        MarvinImage[] subimages = getSubimages(rects, original);
    
        // 5. Compare the target object with each object in the other image
        compare(target, subimages, original, rects);
        MarvinImageIO.saveImage(original, "./res/logos/logos_out.jpg");
    }
    
    private void compare(MarvinImage target, MarvinImage[] subimages, MarvinImage original, int[][] rects){
        MarvinAttributes attrOut = new MarvinAttributes();
        for(int i=0; i<subimages.length; i++){
            diff.setAttribute("comparisonImage", subimages[i]);
            diff.setAttribute("colorRange", 30);
            diff.process(target, null, attrOut);
            if((Integer)attrOut.get("total") < (50*50)*0.6){
                original.drawRect(rects[i][0], rects[i][6], rects[i][7], rects[i][8], 6, Color.green);
            }
        }
    }
    
    private MarvinImage segmentTarget(){
        MarvinImage original = MarvinImageIO.loadImage("./res/logos/target.jpg");
        MarvinImage target = original.clone();
        threshold.process(target, target);
        MarvinImage image2 = new MarvinImage(target.getWidth(), target.getHeight());
        fill(target, image2);
        LinkedHashSet<Integer> objects = filterByMass(image2, 10000);
        int[][] rects = getRects(objects, image2, target);
        MarvinImage[] subimages = getSubimages(rects, original);
        return subimages[0];
    }
    
    
    
    private int[][] getRects(LinkedHashSet<Integer> objects, MarvinImage mask, MarvinImage original){
        List<int[]> ret = new ArrayList<int[]>();
        for(Integer color:objects){
            ret.add(getObjectRect(mask, color));
        }
        return ret.toArray(new int[0][0]);
    }
    
    private MarvinImage[] getSubimages(int[][] rects, MarvinImage original){
        List<MarvinImage> ret = new ArrayList<MarvinImage>();
        for(int[] r:rects){
            ret.add(getSubimage(r, original));
        }
        return ret.toArray(new MarvinImage[0]);
    }
    
    private MarvinImage getSubimage(int rect[], MarvinImage original){
        MarvinImage img = original.subimage(rect[0], rect[1], rect[2], rect[3]);
        MarvinImage ret = new MarvinImage(50,50);
        scale.setAttribute("newWidth", 50);
        scale.setAttribute("newHeight", 50);
        scale.process(img, ret);
        return ret;
    }
    
    private void fill(MarvinImage imageIn, MarvinImage imageOut){
        boolean found;
        int color= 0xFFFF0000;
    
        while(true){
            found=false;
    
            Outerloop:
            for(int y=0; y<imageIn.getHeight(); y++){
                for(int x=0; x<imageIn.getWidth(); x++){
                    if(imageOut.getIntColor(x,y) == 0 && imageIn.getIntColor(x, y) != 0xFFFFFFFF){
                        fill.setAttribute("x", x);
                        fill.setAttribute("y", y);
                        fill.setAttribute("color", color);
                        fill.setAttribute("threshold", 120);
                        fill.process(imageIn, imageOut);
                        color = newColor(color);
    
                        found = true;
                        break Outerloop;
                    }
                }
            }
    
            if(!found){
                break;
            }
        }
    }
    
    private LinkedHashSet<Integer> filterByMass(MarvinImage image, int mass){
        boolean found;
        HashSet<Integer> analysed = new HashSet<Integer>();
        LinkedHashSet<Integer> ret = new LinkedHashSet<Integer>();
    
        while(true){
            found=false;
    
            outerLoop:
            for(int y=0; y<image.getHeight(); y++){
                for(int x=0; x<image.getWidth(); x++){
                    int color = image.getIntColor(x,y); 
                    if(color != 0){
                        if(!analysed.contains(color)){
                            if(getMass(image, color) >= mass){
                                ret.add(color); 
                            }
                            analysed.add(color);
                            found = true;
                            break outerLoop;
                        }
                    }
                }
            }
    
            if(!found){
                break;
            }
        }
        return ret;
    }
    
    private int getMass(MarvinImage image, int color){
        int total=0;
        for(int y=0; y<image.getHeight(); y++){
            for(int x=0; x<image.getWidth(); x++){
                if(image.getIntColor(x, y) == color){
                    total++;
                }
            }
        }
        return total;
    }
    
    private int[] getObjectRect(MarvinImage mask, int color){
        int x1=-1;
        int x2=-1;
        int y1=-1;
        int y2=-1;
    
        for(int y=0; y<mask.getHeight(); y++){
            for(int x=0; x<mask.getWidth(); x++){
                if(mask.getIntColor(x, y) == color){
    
                    if(x1 == -1 || x < x1){
                        x1 = x;
                    }
                    if(x2 == -1 || x > x2){
                        x2 = x;
                    }
                    if(y1 == -1 || y < y1){
                        y1 = y;
                    }
                    if(y2 == -1 || y > y2){
                        y2 = y;
                    }
                }
            }
        }
    
        return new int[]{x1, y1, (x2-x1), (y2-y1)};
    }
    
    private int newColor(int color){
        int red = (color & 0x00FF0000) >> 16;
        int green = (color & 0x0000FF00) >> 8;
        int blue = (color & 0x000000FF);
    
        if(red <= green && red <= blue){
            red+=5;
        }
        else if(green <= red && green <= blue){
            green+=5;
        }
        else{
            blue+=5;
        }
    
        return 0xFF000000 + (red << 16) + (green << 8) + blue;
    }
    
    public static void main(String[] args) {
        new Logos();
    }   
    }
    
    链接地址: http://www.djcxy.com/p/79568.html

    上一篇: 检测图像中的对象(单词)

    下一篇: 检测单个图像中的多个图像