OpenCV Java : Card Extraction from Image
I am trying to implement some image processing using OpenCV and Java to extract a card out of an image.
Following is my approach:
At step no 8, I am facing some issues, as I am not getting the appropriate corners/vertices. Following sample images shows the scenario :
The original Image
After edge detection and dilation. (What is to be done to get appropriate edges?? Here I've got broken edges. Could not get Hough transform working)
After finding vertices. (shown in green)
Following is the code :
System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
//load Image
File input = new File("card4.png");
BufferedImage image = ImageIO.read(input);
byte[] data = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
//put read image to Mat
mat = new Mat(image.getHeight(), image.getWidth(), CvType.CV_8UC3); //original Mat
mat.put(0, 0, data);
mat_f = new Mat(image.getHeight(), image.getWidth(), CvType.CV_8UC3); //for storing manipulated Mat
//conversion to grayscale, blurring and edge detection
Imgproc.cvtColor(mat, mat_f, Imgproc.COLOR_RGB2BGR);
Imgproc.cvtColor(mat_f, mat_f, Imgproc.COLOR_RGB2GRAY);
Imgproc.GaussianBlur(mat_f, mat_f, new Size(13,13), 0);
Imgproc.Canny(mat_f, mat_f, 300, 600, 5, true);
Imgproc.dilate(mat_f, mat_f, new Mat(), new Point(-1, -1), 2);
Imgcodecs.imwrite("D:JAVAImage_ProcCVTest1.jpg",mat_f);
//finding contours
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(mat_f, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
double maxArea=0;
int maxAreaIdx=0;
//finding largest contour
for (int idx = 0; idx != contours.size(); ++idx)
{
Mat contour = contours.get(idx);
double contourarea = Imgproc.contourArea(contour);
if (contourarea > maxArea)
{
maxArea = contourarea;
maxAreaIdx = idx;
}
}
//Rect rect = Imgproc.boundingRect(contours.get(maxAreaIdx));
//Imgproc.rectangle(mat, new Point(rect.x,rect.y), new Point(rect.x+rect.width,rect.y+rect.height),new Scalar(0,0,255),7);
// mat = mat.submat(rect.y, rect.y + rect.height, rect.x, rect.x + rect.width);
//Polygon approximation
MatOfPoint2f approxCurve = new MatOfPoint2f();
MatOfPoint2f oriCurve = new MatOfPoint2f(contours.get(maxAreaIdx).toArray());
Imgproc.approxPolyDP(oriCurve, approxCurve, 6.0, true);
//drawing red markers at vertices
Point [] array = approxCurve.toArray();
for(int i=0; i < array.length;i++) {
Imgproc.circle(mat, array[i], 2, new Scalar(0, 255, 0), 5);
}
Imgcodecs.imwrite("D:JAVAImage_ProcCVTest.jpg",mat);
Seeking help in getting the appropriate corner vertices... Thanks in advance..
In order to archive the good result using your approach then your cards have to contain 4 corners. But i prefer to use the HoughLine approach for this task.
Step 1: Resize image for higher performance
Step 2: Edges detection
You can use the dilation for make the white bigger for the next step
Step 3: Find card's corners
Here is sample code in Java
// STEP 1: Resize input image to img_proc to reduce computation
double ratio = DOWNSCALE_IMAGE_SIZE / Math.max(frame.width(), frame.height());
Size downscaledSize = new Size(frame.width() * ratio, frame.height() * ratio);
Mat dst = new Mat(downscaledSize, frame.type());
Imgproc.resize(frame, dst, downscaledSize);
Mat grayImage = new Mat();
Mat detectedEdges = new Mat();
// STEP 2: convert to grayscale
Imgproc.cvtColor(dst, grayImage, Imgproc.COLOR_BGR2GRAY);
// STEP 3: try to filter text inside document
Imgproc.medianBlur(grayImage, detectedEdges, 9);
// STEP 4: Edge detection
Mat edges = new Mat();
// Imgproc.erode(edges, edges, new Mat());
// Imgproc.dilate(edges, edges, new Mat(), new Point(-1, -1), 1); // 1
// canny detector, with ratio of lower:upper threshold of 3:1
Imgproc.Canny(detectedEdges, edges, this.threshold.getValue(), this.threshold.getValue() * 3, 3, true);
// STEP 5: makes the object in white bigger to join nearby lines
Imgproc.dilate(edges, edges, new Mat(), new Point(-1, -1), 1); // 1
Image imageToShow = Utils.mat2Image(edges);
updateImageView(cannyFrame, imageToShow);
// STEP 6: Compute the contours
List<MatOfPoint> contours = new ArrayList<>();
Imgproc.findContours(edges, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
// STEP 7: Sort the contours by length and only keep the largest one
MatOfPoint largestContour = getMaxContour(contours);
// STEP 8: Generate the convex hull of this contour
Mat convexHullMask = Mat.zeros(frame.rows(), frame.cols(), frame.type());
MatOfInt hullInt = new MatOfInt();
Imgproc.convexHull(largestContour, hullInt);
MatOfPoint hullPoint = OpenCVUtil.getNewContourFromIndices(largestContour, hullInt);
// STEP 9: Use approxPolyDP to simplify the convex hull (this should give a quadrilateral)
MatOfPoint2f polygon = new MatOfPoint2f();
Imgproc.approxPolyDP(OpenCVUtil.convert(hullPoint), polygon, 20, true);
List<MatOfPoint> tmp = new ArrayList<>();
tmp.add(OpenCVUtil.convert(polygon));
restoreScaleMatOfPoint(tmp, ratio);
Imgproc.drawContours(convexHullMask, tmp, 0, new Scalar(25, 25, 255), 2);
// Image extractImageToShow = Utils.mat2Image(convexHullMask);
// updateImageView(extractFrame, extractImageToShow);
MatOfPoint2f finalCorners = new MatOfPoint2f();
Point[] tmpPoints = polygon.toArray();
for (Point point : tmpPoints) {
point.x = point.x / ratio;
point.y = point.y / ratio;
}
finalCorners.fromArray(tmpPoints);
boolean clockwise = true;
double currentThreshold = this.threshold.getValue();
if (finalCorners.toArray().length == 4) {
Size size = getRectangleSize(finalCorners);
Mat result = Mat.zeros(size, frame.type());
// STEP 10: Homography: Use findHomography to find the affine transformation of your paper sheet
Mat homography = new Mat();
MatOfPoint2f dstPoints = new MatOfPoint2f();
Point[] arrDstPoints = { new Point(result.cols(), result.rows()), new Point(0, result.rows()), new Point(0, 0), new Point(result.cols(), 0) };
dstPoints.fromArray(arrDstPoints);
homography = Calib3d.findHomography(finalCorners, dstPoints);
// STEP 11: Warp the input image using the computed homography matrix
Imgproc.warpPerspective(frame, result, homography, size);
}
链接地址: http://www.djcxy.com/p/79604.html
上一篇: 定向加权中值滤波器(图像处理)
下一篇: OpenCV Java:从图像中提取卡片