What is a stack pointer used for in microprocessors?
I am preparing for a microprocessor exam. If the use of a program counter is to hold the address of the next instruction, what is use of stack pointer?
A stack is a LIFO (last in, first out - the last entry you push on to the stack is the first one you get back when you pop) data structure that is typically used to hold stack frames (bits of the stack that belong to the current function).
This includes, but is not limited to:
You push items onto the stack and pop them off. In a microprocessor, the stack can be used for both user data (such as local variables and passed parameters) and CPU data (such as return addresses when calling subroutines).
The actual implementation of a stack depends on the microprocessor architecture. It can grow up or down in memory and can move either before or after the push/pop operations.
Operation which typically affect the stack are:
Consider the following program in my (fictional) assembly language:
Addr Opcodes Instructions ; Comments
---- -------- -------------- ----------
; 1: pc<-0000, sp<-8000
0000 01 00 07 load r0,7 ; 2: pc<-0003, r0<-7
0003 02 00 push r0 ; 3: pc<-0005, sp<-7ffe, (sp:7ffe)<-0007
0005 03 00 00 call 000b ; 4: pc<-000b, sp<-7ffc, (sp:7ffc)<-0008
0008 04 00 pop r0 ; 7: pc<-000a, r0<-(sp:7ffe[0007]), sp<-8000
000a 05 halt ; 8: pc<-000a
000b 06 01 02 load r1,[sp+2] ; 5: pc<-000e, r1<-(sp+2:7ffe[0007])
000e 07 ret ; 6: pc<-(sp:7ffc[0008]), sp<-7ffe
Now let's follow the execution, describing the steps shown in the comments above:
Hopefully from that description, it will become clear. Bottom line is: a stack is useful for storing state in a LIFO way and this is generally ideal for the way most microprocessors do subroutine calls.
Unless you're a SPARC of course, in which case you use a circular buffer for your stack :-)
Update: Just to clarify the steps taken when pushing and popping values in the above example (whether explicitly or by call/return), see the following examples:
LOAD R0,7
PUSH R0
Adjust sp Store val
sp-> +--------+ +--------+ +--------+
| xxxx | sp->| xxxx | sp->| 0007 |
| | | | | |
| | | | | |
| | | | | |
+--------+ +--------+ +--------+
POP R0
Get value Adjust sp
+--------+ +--------+ sp->+--------+
sp-> | 0007 | sp->| 0007 | | 0007 |
| | | | | |
| | | | | |
| | | | | |
+--------+ +--------+ +--------+
The stack pointer stores the address of the most recent entry that was pushed onto the stack.
To push a value onto the stack, the stack pointer is incremented to point to the next physical memory address, and the new value is copied to that address in memory.
To pop a value from the stack, the value is copied from the address of the stack pointer, and the stack pointer is decremented, pointing it to the next available item in the stack.
The most typical use of a hardware stack is to store the return address of a subroutine call. When the subroutine is finished executing, the return address is popped off the top of the stack and placed in the Program Counter register, causing the processor to resume execution at the next instruction following the call to the subroutine.
http://en.wikipedia.org/wiki/Stack_%28data_structure%29#Hardware_stacks
You got more preparing [for the exam] to do ;-)
The Stack Pointer is a register which holds the address of the next available spot on the stack.
The stack is a area in memory which is reserved to store a stack, that is a LIFO (Last In First Out) type of container, where we store the local variables and return address, allowing a simple management of the nesting of function calls in a typical program.
See this Wikipedia article for a basic explanation of the stack management.
链接地址: http://www.djcxy.com/p/80364.html上一篇: ASM函数调用返回地址
下一篇: 什么是微处理器中使用的堆栈指针?