Reasoning about performance in Haskell
The following two Haskell programs for computing the n'th term of the Fibonacci sequence have greatly different performance characteristics:
fib1 n =
case n of
0 -> 1
1 -> 1
x -> (fib1 (x-1)) + (fib1 (x-2))
fib2 n = fibArr !! n where
fibArr = 1:1:[a + b | (a, b) <- zip fibArr (tail fibArr)]
They are very close to mathematically identical, but fib2
uses the list notation to memoize its intermediate results, while fib1
has explicit recursion. Despite the potential for the intermediate results to be cached in fib1
, the execution time gets to be a problem even for fib1 25
, suggesting that the recursive steps are always evaluated. Does referential transparency contribute anything to Haskell's performance? How can I know ahead of time if it will or won't?
This is just an example of the sort of thing I'm worried about. I'd like to hear any thoughts about overcoming the difficulty inherent in reasoning about the performance of a lazily-executed, functional programming language.
Summary: I'm accepting 3lectrologos's answer, because the point that you don't reason so much about the language's performance, as about your compiler's optimization, seems to be extremely important in Haskell - more so than in any other language I'm familiar with. I'm inclined to say that the importance of the compiler is the factor that differentiates reasoning about performance in lazy, functional langauges, from reasoning about the performance of any other type.
Addendum: Anyone happening on this question may want to look at the slides from Johan Tibell's talk about high performance Haskell.
In your particular Fibonacci example, it's not very hard to see why the second one should run faster (although you haven't specified what f2 is).
It's mainly an algorithmic issue:
In general, it's much harder to make performance assumptions for a lazy language like Haskell, than for an eager one. Nevertheless, if you understand the underlying mechanisms (especially for laziness) and gather some experience , you will be able to make some "predictions" about performance.
Referential transparency increases (potentially) performance in (at least) two ways:
If you want to read more about the reasoning behind the design choices (laziness, pureness) of Haskell, I'd suggest reading this.
Reasoning about performance is generally hard in Haskell and lazy languages in general, although not impossible. Some techniques are covered in Chris Okasaki's Purely Function Data Structures (also available online in a previous version).
Another way to ensure performance is to fix the evaluation order, either using annotations or continuation passing style. That way you get to control when things are evaluated.
In your example you might calculate the numbers "bottom up" and pass the previous two numbers along to each iteration:
fib n = fib_iter(1,1,n)
where
fib_iter(a,b,0) = a
fib_iter(a,b,1) = a
fib_iter(a,b,n) = fib_iter(a+b,a,n-1)
This results in a linear time algorithm.
Whenever you have a dynamic programming algorithm where each result relies on the N previous results, you can use this technique. Otherwise you might have to use an array or something completely different.
Your implementation of fib2 uses memoization but each time you call fib2 it rebuild the "whole" result. Turn on ghci time and size profiling:
Prelude> :set +s
If it was doing memoisation "between" calls the subsequent calls would be faster and use no memory. Call fib2 20000 twice and see for yourself.
By comparison a more idiomatic version where you define the exact mathematical identity:
-- the infinite list of all fibs numbers.
fibs = 1 : 1 : zipWith (+) fibs (tail fibs)
memoFib n = fibs !! n
actually do use memoisation, explicit as you see. If you run memoFib 20000 twice you'll see the time and space taken the first time then the second call is instantaneous and take no memory. No magic and no implicit memoization like a comment might have hinted at.
Now about your original question: optimizing and reasoning about performance in Haskell...
I wouldn't call myself an expert in Haskell, I have only been using it for 3 years, 2 of which at my workplace but I did have to optimize and get to understand how to reason somewhat about its performance.
As mentionned in other post laziness is your friend and can help you gain performance however YOU have to be in control of what is lazily evaluated and what is strictly evaluated.
Check this comparison of foldl vs foldr
foldl actually stores "how" to compute the value ie it is lazy. In some case you saves time and space beeing lazy, like the "infinite" fibs. The infinite "fibs" doesn't generate all of them but knows how. When you know you will need the value you might as well just get it "strictly" speaking... That's where strictness annotation are usefull, to give you back control.
I recall reading many times that in lisp you have to "minimize" consing.
Understanding what is stricly evaluated and how to force it is important but so is understanding how much "trashing" you do to the memory. Remember Haskell is immutable, that means that updating a "variable" is actually creating a copy with the modification. Prepending with (:) is vastly more efficient than appending with (++) because (:) does not copy memory contrarily to (++). Whenever a big atomic block is updated (even for a single char) the whole block needs to be copied to represent the "updated" version. The way you structure data and update it can have a big impact on performance. The ghc profiler is your friend and will help you spot these. Sure the garbage collector is fast but not having it do anything is faster!
Cheers
链接地址: http://www.djcxy.com/p/80802.html上一篇: 使用递归类型在Haskell中键入lambda微积分
下一篇: 关于Haskell性能的推理