finding the number of integer points under a triangle, square and circle

for circle i have tried to check for all points within radius distance from center.For square, i test for all points from bottom-left-corner to upper-right-corner and for triangle i test the signs of determinants as suggested here. I get correct answer while i enter individual values ie either 1 cirlce or 1 square or 1 triangle , but not when there are >1 of them. Eg for the case:

C 10 10 3
S 9 8 4
T 7 9 10 8 8 10

where C is circle, S is square and T is triangle,and (10,10) is center of circle with radius 3. (9,8) is the left-most corner of square of side 4 and (7,9),(10,8) and (8,10) are the three vertices of the triangle , the total distinct points covered by them is 34 but i am getting 37.

Here's what i've tried:

typedef pair<int,int> point;
set<point>myset;
set<point>::iterator it;

int findDeter(int x1,int y1,int x2,int y2,int x0,int y0)
{
int ret = x1*(y2-y0)-y1*(x2-x0)+(x2*y0-x0*y2)
         -x2*(y1-y0)+y2*(x1-x0)-(x1*y0-x0*y1)
         +x0*(y1-y2)-y0*(x1-x2)+(x1*y2-x2*y1);
return ret;
}
bool sameSign(int x, int y)
{
if(x==0||y==0)
return true;
    return (x >= 0) ^ (y < 0);
}
int main()
{
int t,i,j,k,n;
int x,y,r,x1,y1,len;
int xmax,ymax,xmin,ymin;
int D1,D2,D3;
int ax,ay,bx,by,cx,cy;
char shape,dump;
scanf("%d",&t);
while(t--)
{
    myset.clear();
    scanf("%d",&n);
    for(i=0;i<n;i++)
    {
        scanf("%c",&dump);
        scanf("%c",&shape);
        if(shape=='C')
        {
            scanf("%d %d %d",&x,&y,&r);
            for(j=x;j<=x+r;j++)
            {
                for(k=y;k<=y+r;k++)
                {
                    point p(j,k);
                    myset.insert(p);
                }
            }
            for(j=x-r;j<x;j++)
            {
                for(k=y-r;k<y;k++)
                {
                    point p(j,k);
                    myset.insert(p);
                }
            }   

        }
        else if(shape=='S')
        {
            scanf("%d %d %d",&x1,&y1,&len);
            for(j=x1;j<=x1+len;j++)
            {
                for(k=y1;k<=y1+len;k++)
                {
                    point p(j,k);
                    myset.insert(p);
                }
            }

        }
        else
        {
            //printf("heren");
            scanf("%d %d %d %d %d %d",&ax,&ay,&bx,&by,&cx,&cy);
            /*a1=ax;a2=ay;
            b1=bx;b2=by;
            c1=cx;c2=cy;*/
            xmax = max(ax,max(bx,cx));
            ymax = max(ay,max(by,cy));
            xmin = min(ax,min(bx,cx));
            ymin = min(ay,min(by,cy));
            /*for each point P check if sum(the determinants PAB,PAC and PBC have the same signs)*/
            for(j=xmin;j<=xmax;j++)
            {
                for(k=ymin;k<=ymax;k++)
                {
                    D1 = findDeter(ax,ay,bx,by,j,k);
                    //printf("D1 : %dn",D1);
                    D2 = findDeter(bx,by,cx,cy,j,k);
                    //printf("D2 : %dn",D2);
                    D3 = findDeter(cx,cy,ax,ay,j,k);
                    //printf("D3 : %dn",D3);
                    if(sameSign(D1,D2)&&sameSign(D2,D3)&&sameSign(D1,D3))
                    {
                        //printf("heren");
                        point p(j,k);
                        myset.insert(p);
                    }
                }
            }
        }

    }
    printf("%dn",myset.size());
}
return 0;
}

After refactoring your code heavily so that it was clearer to me what is going on - I'd say the error is in the circle code. I've included the complete refactored code below but the troublesome section amount s to this:

struct Circle
{
   int x;
   int y;
   int r;

   void add_covered_points( set<points> & pts ) const
   {
      for(int j=x;j<=x+r;j++)
      {
         for(int k=y;k<=y+r;k++)
         {
            pts.insert(point(j,k));
         }
      }
      for(int j=x-r;j<x;j++)
      {
         for(int k=y-r;k<y;k++)
         {
            pts.insert(point(j,k));
         }
      }  
   }
};

This seems to add points from two rectangular sections, one above and the other below the center of the circle. I'd expect the code to look more like this:

   void add_covered_points( set<points> & pts ) const
   {
      for(int j=-r;j<=+r;j++)
      {
         for(int k=-r;k<=+r;k++)
         {
            if (j*j + k*k < r*r )
            {
              pts.insert(point(x+j,x+k));
            }
         }
      } 
   }

Heres the complete refactored case for your reference

typedef pair<int,int> point;


int findDeter(int x1,int y1,int x2,int y2,int x0,int y0)
{
int ret = x1*(y2-y0)-y1*(x2-x0)+(x2*y0-x0*y2)
         -x2*(y1-y0)+y2*(x1-x0)-(x1*y0-x0*y1)
         +x0*(y1-y2)-y0*(x1-x2)+(x1*y2-x2*y1);
return ret;
}
bool sameSign(int x, int y)
{
if(x==0||y==0)
return true;
    return (x >= 0) ^ (y < 0);
}

struct Circle
{
   int x;
   int y;
   int r;

   void add_covered_points( set<points> & pts ) const
   {
      for(int j=x;j<=x+r;j++)
      {
         for(int k=y;k<=y+r;k++)
         {
            pts.insert(point(j,k));
         }
      }
      for(int j=x-r;j<x;j++)
      {
         for(int k=y-r;k<y;k++)
         {
            pts.insert(point(j,k));
         }
      }  
   }
};

struct Square
{
  int x1,y1,len;
  void add_covered_points( set<points> & pts ) const
  {
     for(int j=x1;j<=x1+len;j++)
     {
        for(int k=y1;k<=y1+len;k++)
        {
           myset.insert(point(j,k));
        }
     }
  }
};

struct Triangle
{
  int ax,ay,bx,by,cx,cy;
  void add_covered_points( set<points> & pts ) const
  {
     int xmax = max(ax,max(bx,cx));
     int ymax = max(ay,max(by,cy));
     int xmin = min(ax,min(bx,cx));
     int ymin = min(ay,min(by,cy));

     /*for each point P check if sum(the determinants PAB,PAC and PBC have the same signs)*/
     for(int j=xmin;j<=xmax;j++)
     {
       for(int k=ymin;k<=ymax;k++)
       {
          int D1 = findDeter(ax,ay,bx,by,j,k);
          int D2 = findDeter(bx,by,cx,cy,j,k);
          int D3 = findDeter(cx,cy,ax,ay,j,k);

          if(sameSign(D1,D2)&&sameSign(D2,D3)&&sameSign(D1,D3))
          {
            pts.insert(point(j,k));
          }
        }
     }
  }
};


int main()
{
set<point>myset;
int t;
scanf("%d",&t);
while(t--)
{
    myset.clear();
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
    {
        char dump;
        char shape;
        scanf("%c",&dump);
        scanf("%c",&shape);
        if(shape=='C')
        {
            Circle c;
            scanf("%d %d %d",&c.x,&c.y,&c.r);
            c.add_covered_points( myset );
        }
        else if(shape=='S')
        {
            Square s;
            scanf("%d %d %d",&s.x1,&s.y1,&s.len);
            s.add_covered_points( myset );
        }
        else
        {
            Triangle t;
            int ax,ay,bx,by,cx,cy;
            scanf("%d %d %d %d %d %d",&t.ax,&t.ay,&t.bx,&t.by,&t.cx,&t.cy);
            t.add_covered_points( myset );
        }
    }
}
return 0;
}

Pick's theorem is suitable for counting integer points in the interior of simple polygons with integer vertices.

Here we can see solution for circles.

链接地址: http://www.djcxy.com/p/84980.html

上一篇: 找到圆和矩形之间重叠的中点

下一篇: 找到三角形,正方形和圆形下的整数点数