指向使用角度和半径为3 lat的三角形

我希望得到一条线的距离,并开始使用haversine代码。

 private static final double _eQuatorialEarthRadius = 6378.1370D;
    private static final double _d2r = (Math.PI / 180D);
    private static double PRECISION = 0.001;

    // Haversine Algorithm
    // source: http://stackoverflow.com/questions/365826/calculate-distance-between-2-gps-coordinates

    private static double HaversineInM(double lat1, double long1, double lat2, double long2) {
        return  (1000D * HaversineInKM(lat1, long1, lat2, long2));

    }

    private static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;

        return d;
    }

    // Distance between a point and a line

    public static double pointLineDistanceTest(double[] aalatlng,double[] bblatlng,double[] ttlatlng) {


        double [] a = aalatlng;
        double [] b = bblatlng;
        double [] c = ttlatlng;


        double[] nearestNode = nearestPointGreatCircle(a, b, c);
//        System.out.println("nearest node: " + Double.toString(nearestNode[0]) + "," + Double.toString(nearestNode[1]));
        double result =  HaversineInM(c[0], c[1], nearestNode[0], nearestNode[1]);
//        System.out.println("result: " + Double.toString(result));


              return (result);


    }

    // source: http://stackoverflow.com/questions/1299567/how-to-calculate-distance-from-a-point-to-a-line-segment-on-a-sphere
    private static double[] nearestPointGreatCircle(double[] a, double[] b, double c[])
    {
        double[] a_ = toCartsian(a);
        double[] b_ = toCartsian(b);
        double[] c_ = toCartsian(c);

        double[] G = vectorProduct(a_, b_);
        double[] F = vectorProduct(c_, G);
        double[] t = vectorProduct(G, F);

        return fromCartsian(multiplyByScalar(normalize(t), _eQuatorialEarthRadius));
    }

    @SuppressWarnings("unused")
    private static double[] nearestPointSegment (double[] a, double[] b, double[] c)
    {
       double[] t= nearestPointGreatCircle(a,b,c);
       if (onSegment(a,b,t))
         return t;

       return (HaversineInKM(a[0], a[1], c[0], c[1]) < HaversineInKM(b[0], b[1], c[0], c[1])) ? a : b;
    }

     private static boolean onSegment (double[] a, double[] b, double[] t)
       {
         // should be   return distance(a,t)+distance(b,t)==distance(a,b), 
         // but due to rounding errors, we use: 
         return Math.abs(HaversineInKM(a[0], a[1], b[0], b[1])-HaversineInKM(a[0], a[1], t[0], t[1])-HaversineInKM(b[0], b[1], t[0], t[1])) < PRECISION;
       }


    // source: http://stackoverflow.com/questions/1185408/converting-from-longitude-latitude-to-cartesian-coordinates
    private static double[] toCartsian(double[] coord) {
        double[] result = new double[3];
        result[0] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.cos(Math.toRadians(coord[1]));
        result[1] = _eQuatorialEarthRadius * Math.cos(Math.toRadians(coord[0])) * Math.sin(Math.toRadians(coord[1]));
        result[2] = _eQuatorialEarthRadius * Math.sin(Math.toRadians(coord[0]));


        return result;
    }

    private static double[] fromCartsian(double[] coord){
        double[] result = new double[2];
        result[0] = Math.toDegrees(Math.asin(coord[2] / _eQuatorialEarthRadius));
        result[1] = Math.toDegrees(Math.atan2(coord[1], coord[0]));

        return result;
    }


    // Basic functions
    private static double[] vectorProduct (double[] a, double[] b){
        double[] result = new double[3];
        result[0] = a[1] * b[2] - a[2] * b[1];
        result[1] = a[2] * b[0] - a[0] * b[2];
        result[2] = a[0] * b[1] - a[1] * b[0];

        return result;
    }

    private static double[] normalize(double[] t) {
        double length = Math.sqrt((t[0] * t[0]) + (t[1] * t[1]) + (t[2] * t[2]));
        double[] result = new double[3];
        result[0] = t[0]/length;
        result[1] = t[1]/length;
        result[2] = t[2]/length;
        return result;
    }

    private static double[] multiplyByScalar(double[] normalize, double k) {
        double[] result = new double[3];
        result[0] = normalize[0]*k;
        result[1] = normalize[1]*k;
        result[2] = normalize[2]*k;
        return result;
    }

并有许多错误,所以写这个计算使用轴承来获得角度,然后使用距离(点a,目标)来计算目标(点a,点b)线。 点A和B是线,我想要从目标到线的距离。 没有很大的圈子。 sin角度(方位差)* a点到目标距离=从AB线上的直角到目标为止的直角三角形边的长度。

 public  double pointlinedistancetest(){

     //set latlng location point a
     Location apoint=new Location("");

     apoint.setLatitude(lata);
     apoint.setLongitude(lona);


     //set latlng location point b
     Location bpoint=new Location("");

     bpoint.setLatitude(latb);
     bpoint.setLongitude(lonb);


     //set latlng location target to get dis to line
     Location tpoint=new Location("");

     tpoint.setLatitude(lat);
     tpoint.setLongitude(lon);


     float pbearingf = apoint.bearingTo(bpoint);

     float tbearingf= apoint.bearingTo(tpoint);

     double tb=tbearingf;
     double ab=pbearingf;



             //get angle degree difference 
    float angle= Math.min((pbearingf-tbearingf)<0?pbearingf-tbearingf+360:pbearingf-tbearingf, (tbearingf-pbearingf)<0?tbearingf-pbearingf+360:tbearingf-pbearingf);
//   float angle= Math.min((tbearingf-pbearingf)<0?tbearingf-pbearingf+360:tbearingf-pbearingf, (pbearingf-tbearingf)<0?pbearingf-tbearingf+360:pbearingf-tbearingf); 

    // min((a1-a2)<0?a1-a2+360:a1-a2, (a2-a1)<0?a2-a1+360:a2-a1)


     double aabearing=angle;

              float atot=apoint.distanceTo(tpoint);

     double atotdis=atot;

             //right angle triangle formula
     dis=(Math.sin(aabearing))*atotdis;

     return (dis);

}

现在两者仍然表现出高达30%的巨大误差。 这段代码看起来是否正确,有没有更好的方法来做到这一点,或者是我的错误在哪里。 我的GPS显示精度为4米,我的公式(代码)显示10到20米的误差,似乎并没有太大差异。


您可以使用Google Geometry库查找线的长度及其方位。

从文档

computeDistanceBetween(从:LatLng,到:LatLng,radius?:number)以米为单位的数字返回两个LatLng之间的距离。 半径以米为单位默认为地球半径(6378137)。

computeHeading(from:LatLng,to:LatLng)返回从一个LatLng到另一个LatLng的标题。 标题以[-180,180]范围内的北方顺时针方向表示为数字。

computeOffset(from:LatLng,distance:number,heading:number,radius?:number)返回从指定标题中的原点移动距离(以从北方顺时针表示的度数表示)所得到的LatLng。

在这里输入图像描述

首先找到行的开始和结束之间的距离

var spherical = google.maps.geometry.spherical; 
var length = google.maps.geometry.spherical.computeDistanceBetween(A,B);

然后找到线的方位

 var heading = google.maps.geometry.spherical.computeHeading(A,B);

从图像120度

然后找到A行和C行之间的距离和方位

var length2 = google.maps.geometry.spherical.computeDistanceBetween(A,C);
var heading2 = google.maps.geometry.spherical.computeHeading(A,C);

从图像50度

var angleBAC = heading1-heading2

角度BAC = 120 - 50度= 70度

正如您现在知道角度BAC和从A到C的距离,您可以使用三角法来查找长度CD

sineBAC = opp / Hypotenuese

var CD = Math.sin(angleBAC) * length2;

从图像

opp =正弦70度X长度AC

从图像0.9397 X 5 = 4.6984

链接地址: http://www.djcxy.com/p/85007.html

上一篇: point to line using angles and haversine with 3 lat long points

下一篇: Using distance matrix to find coordinate points of set of points