用矢量乘以矩阵行?
我正在优化一个函数,我想摆脱慢循环。 我正在寻找一种更快的方法来将矩阵的每一行乘以一个向量。
有任何想法吗?
编辑:
我不是在寻找一种“古典”的乘法。
例如。 我有矩阵,有23列和25行,矢量的长度为23.结果我想要矩阵25x23,每行乘以矢量。
我认为你正在寻找sweep()
。
> (mat <- matrix(rep(1:3,each=5),nrow=3,ncol=5,byrow=TRUE))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
> vec <- 1:5
> sweep(mat,MARGIN=2,vec,`*`)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
这是R的核心功能之一,尽管多年来已经有所改进。
> MyMatrix <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE)
> MyMatrix
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 11 12 13
> MyVector <- c(1:3)
> MyVector
[1] 1 2 3
你可以使用:
> t(t(MyMatrix) * MyVector)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 11 24 39
要么:
> MyMatrix %*% diag(MyVector)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 11 24 39
实际上, sweep
并不是我电脑上的最快选项:
MyMatrix <- matrix(c(1:1e6), ncol=1e4, byrow=TRUE)
MyVector <- c(1:1e4)
Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option
Rprof()
MyTimerTranspose=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
MyMatrix %*% diag(MyVector) # second option
Rprof()
MyTimerDiag=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
sweep(MyMatrix ,MARGIN=2,MyVector,`*`) # third option
Rprof()
MyTimerSweep=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option again, to check order
Rprof()
MyTimerTransposeAgain=summaryRprof(tmp)$sampling.time
unlink(tmp)
MyTimerTranspose
MyTimerDiag
MyTimerSweep
MyTimerTransposeAgain
这产生:
> MyTimerTranspose
[1] 0.04
> MyTimerDiag
[1] 40.722
> MyTimerSweep
[1] 33.774
> MyTimerTransposeAgain
[1] 0.043
除最慢选项之外,第二个选项达到内存限制(2046 MB)。 然而,考虑到其余的选择,在我看来,双重换位看起来好于sweep
。
编辑
只需重复尝试较小的数据:
MyMatrix <- matrix(c(1:1e3), ncol=1e1, byrow=TRUE)
MyVector <- c(1:1e1)
n=100000
[...]
for(i in 1:n){
# your option
}
[...]
> MyTimerTranspose
[1] 5.383
> MyTimerDiag
[1] 6.404
> MyTimerSweep
[1] 12.843
> MyTimerTransposeAgain
[1] 5.428
链接地址: http://www.djcxy.com/p/85981.html