Postgres慢查询(慢速索引扫描)

我有一张有300万行和1.3GB大小的表格。 在我的笔记本电脑上使用4GB RAM运行Postgres 9.3。

explain analyze
select act_owner_id from cnt_contacts where act_owner_id = 2

我对cnt_contacts.act_owner_id的btree键定义如下:

CREATE INDEX cnt_contacts_idx_act_owner_id 
   ON public.cnt_contacts USING btree (act_owner_id, status_id);

查询运行约5秒钟

Bitmap Heap Scan on cnt_contacts  (cost=2598.79..86290.73 rows=6208 width=4) (actual time=5865.617..5875.302 rows=5444 loops=1)
  Recheck Cond: (act_owner_id = 2)
  ->  Bitmap Index Scan on cnt_contacts_idx_act_owner_id  (cost=0.00..2597.24 rows=6208 width=0) (actual time=5865.407..5865.407 rows=5444 loops=1)
        Index Cond: (act_owner_id = 2)
Total runtime: 5875.684 ms"
为什么要这么久?

work_mem = 1024MB; 
shared_buffers = 128MB;
effective_cache_size = 1024MB
seq_page_cost = 1.0         # measured on an arbitrary scale
random_page_cost = 15.0         # same scale as above
cpu_tuple_cost = 3.0

您正在笔记本电脑上选择分散在1.3 GB桌子上的5444条记录。 你期望多长时间?

它看起来像你的索引没有被缓存,或者因为它不能被缓存持续,或者因为这是你第一次使用它的那部分。 如果重复运行完全相同的查询,会发生什么情况? 相同的查询,但具有不同的常量?

在“explain(analyze,buffers)”下运行查询将有助于获得更多信息,特别是如果您先开启了track_io_timing。


好的,你有PG桌面,索引和长时间的执行。 让我们思考如何改进你的计划和缩短时间。 你写和删除行。 PG写和删除元组和表和索引可能会膨胀。 为了好搜索,PG将索引加载到共享缓冲区。 你需要保持你的索引尽可能干净。 对于选择,PG将读取到共享缓冲区而不是搜索。 尝试设置缓冲区内存并减少索引和表格膨胀,保持数据库清理。

你的所作所为并思考:

1)只要检查索引重复,并且你的索引有很好的选择:

 WITH table_scans as (
    SELECT relid,
        tables.idx_scan + tables.seq_scan as all_scans,
        ( tables.n_tup_ins + tables.n_tup_upd + tables.n_tup_del ) as writes,
                pg_relation_size(relid) as table_size
        FROM pg_stat_user_tables as tables
),
all_writes as (
    SELECT sum(writes) as total_writes
    FROM table_scans
),
indexes as (
    SELECT idx_stat.relid, idx_stat.indexrelid,
        idx_stat.schemaname, idx_stat.relname as tablename,
        idx_stat.indexrelname as indexname,
        idx_stat.idx_scan,
        pg_relation_size(idx_stat.indexrelid) as index_bytes,
        indexdef ~* 'USING btree' AS idx_is_btree
    FROM pg_stat_user_indexes as idx_stat
        JOIN pg_index
            USING (indexrelid)
        JOIN pg_indexes as indexes
            ON idx_stat.schemaname = indexes.schemaname
                AND idx_stat.relname = indexes.tablename
                AND idx_stat.indexrelname = indexes.indexname
    WHERE pg_index.indisunique = FALSE
),
index_ratios AS (
SELECT schemaname, tablename, indexname,
    idx_scan, all_scans,
    round(( CASE WHEN all_scans = 0 THEN 0.0::NUMERIC
        ELSE idx_scan::NUMERIC/all_scans * 100 END),2) as index_scan_pct,
    writes,
    round((CASE WHEN writes = 0 THEN idx_scan::NUMERIC ELSE idx_scan::NUMERIC/writes END),2)
        as scans_per_write,
    pg_size_pretty(index_bytes) as index_size,
    pg_size_pretty(table_size) as table_size,
    idx_is_btree, index_bytes
    FROM indexes
    JOIN table_scans
    USING (relid)
),
index_groups AS (
SELECT 'Never Used Indexes' as reason, *, 1 as grp
FROM index_ratios
WHERE
    idx_scan = 0
    and idx_is_btree
UNION ALL
SELECT 'Low Scans, High Writes' as reason, *, 2 as grp
FROM index_ratios
WHERE
    scans_per_write <= 1
    and index_scan_pct < 10
    and idx_scan > 0
    and writes > 100
    and idx_is_btree
UNION ALL
SELECT 'Seldom Used Large Indexes' as reason, *, 3 as grp
FROM index_ratios
WHERE
    index_scan_pct < 5
    and scans_per_write > 1
    and idx_scan > 0
    and idx_is_btree
    and index_bytes > 100000000
UNION ALL
SELECT 'High-Write Large Non-Btree' as reason, index_ratios.*, 4 as grp 
FROM index_ratios, all_writes
WHERE
    ( writes::NUMERIC / ( total_writes + 1 ) ) > 0.02
    AND NOT idx_is_btree
    AND index_bytes > 100000000
ORDER BY grp, index_bytes DESC )
SELECT reason, schemaname, tablename, indexname,
    index_scan_pct, scans_per_write, index_size, table_size
FROM index_groups;

2)检查你是否有表格和索引膨胀?

     SELECT
        current_database(), schemaname, tablename, /*reltuples::bigint, relpages::bigint, otta,*/
        ROUND((CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages::FLOAT/otta END)::NUMERIC,1) AS tbloat,
        CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::BIGINT END AS wastedbytes,
      iname, /*ituples::bigint, ipages::bigint, iotta,*/
      ROUND((CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages::FLOAT/iotta END)::NUMERIC,1) AS ibloat,
      CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytes
    FROM (
      SELECT
        schemaname, tablename, cc.reltuples, cc.relpages, bs,
        CEIL((cc.reltuples*((datahdr+ma-
          (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::FLOAT)) AS otta,
        COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages,
        COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::FLOAT)),0) AS iotta -- very rough approximation, assumes all cols
      FROM (
        SELECT
          ma,bs,schemaname,tablename,
          (datawidth+(hdr+ma-(CASE WHEN hdr%ma=0 THEN ma ELSE hdr%ma END)))::NUMERIC AS datahdr,
          (maxfracsum*(nullhdr+ma-(CASE WHEN nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2
        FROM (
          SELECT
            schemaname, tablename, hdr, ma, bs,
            SUM((1-null_frac)*avg_width) AS datawidth,
            MAX(null_frac) AS maxfracsum,
            hdr+(
              SELECT 1+COUNT(*)/8
              FROM pg_stats s2
              WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename
            ) AS nullhdr
          FROM pg_stats s, (
            SELECT
              (SELECT current_setting('block_size')::NUMERIC) AS bs,
              CASE WHEN SUBSTRING(v,12,3) IN ('8.0','8.1','8.2') THEN 27 ELSE 23 END AS hdr,
              CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma
            FROM (SELECT version() AS v) AS foo
          ) AS constants
          GROUP BY 1,2,3,4,5
        ) AS foo
      ) AS rs
      JOIN pg_class cc ON cc.relname = rs.tablename
      JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = rs.schemaname AND nn.nspname <> 'information_schema'
      LEFT JOIN pg_index i ON indrelid = cc.oid
      LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid
    ) AS sml
    ORDER BY wastedbytes DESC

3)你是否从硬盘清理未使用的元组? 真空是时候了吗?

SELECT 
    relname AS TableName
    ,n_live_tup AS LiveTuples
    ,n_dead_tup AS DeadTuples
FROM pg_stat_user_tables;

4)考虑一下。 如果你在db中有10条记录,而10中有8条id = 2,那么这意味着你的索引选择性不好,这样PG就会扫描所有8条记录。 但是,你尝试使用ID!= 2索引将工作良好。 尝试设置良好的选择索引。

5)使用适当的列类型获取数据。 如果您可以使用较少的kb类型为您的列转换它。

6)只要检查你的数据库和条件。 检查这是否开始正在进行的页面只要尝试看到数据库中的数据库中有未使用的数据,就必须清理索引,检查索引的选择性。 尝试使用其他brin索引数据,尝试重新创建索引。

链接地址: http://www.djcxy.com/p/86071.html

上一篇: Postgres slow query (slow index scan)

下一篇: Improve PostgreSQL query performance