Allocating more memory than there exists using malloc
This code snippet will allocate 2Gb every time it reads the letter 'u' from stdin, and will initialize all the allocated chars once it reads 'a'.
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#define bytes 2147483648
using namespace std;
int main()
{
char input [1];
vector<char *> activate;
while(input[0] != 'q')
{
gets (input);
if(input[0] == 'u')
{
char *m = (char*)malloc(bytes);
if(m == NULL) cout << "cant allocate mem" << endl;
else cout << "ok" << endl;
activate.push_back(m);
}
else if(input[0] == 'a')
{
for(int x = 0; x < activate.size(); x++)
{
char *m;
m = activate[x];
for(unsigned x = 0; x < bytes; x++)
{
m[x] = 'a';
}
}
}
}
return 0;
}
I am running this code on a linux virtual machine that has 3Gb of ram. While monitoring the system resource usage using the htop tool, I have realized that the malloc operation is not reflected on the resources.
For example when I input 'u' only once(ie allocate 2GB of heap memory), I don't see the memory usage increasing by 2GB in htop. It is only when I input 'a'(ie initialize), I see the memory usage increasing.
As a consequence, I am able to "malloc" more heap memory than there exists. For example, I can malloc 6GB(which is more than my ram and swap memory) and malloc would allow it(ie NULL is not returned by malloc). But when I try to initialize the allocated memory, I can see the memory and swap memory filling up till the process is killed.
-My questions:
1.Is this a kernel bug?
2.Can someone explain to me why this behavior is allowed?
It is called memory overcommit. You can disable it by running as root:
echo 2 > /proc/sys/vm/overcommit_memory
and it is not a kernel feature that I like (so I always disable it). See malloc(3) and mmap(2) and proc(5)
NB: echo 0
instead of echo 2
often -but not always- works also. Read the docs (in particular proc
man page that I just linked to).
from man malloc
(online here):
By default, Linux follows an optimistic memory allocation strategy. This means that when malloc() returns non-NULL there is no guarantee that the memory really is available.
So when you just want to allocate too much, it "lies" to you, when you want to use the allocated memory, it will try to find enough memory for you and it might crash if it can't find enough memory.
No, this is not a kernel bug. You have discovered something known as late paging (or overcommit).
Until you write a byte to the address allocated with malloc (...)
the kernel does little more than "reserve" the address range. This really depends on the implementation of your memory allocator and operating system of course, but most good ones do not incur the majority of kernel overhead until the memory is first used.
The hoard allocator is one big offender that comes to mind immediately, through extensive testing I have found it almost never takes advantage of a kernel that supports late paging. You can always mitigate the effects of late paging in any allocator if you zero-fill the entire memory range immediately after allocation.
Real-time operating systems like VxWorks will never allow this behavior because late paging introduces serious latency. Technically, all it does is put the latency off until a later indeterminate time.
For a more detailed discussion, you may be interested to see how IBM's AIX operating system handles page allocation and overcommitment.
链接地址: http://www.djcxy.com/p/86500.html下一篇: 使用malloc分配更多的内存