获得sqrt(n)的整数部分的最快方法是什么?
我们知道如果n
不是一个完美的正方形,那么sqrt(n)
不会是一个整数。 由于我只需要整数部分,我觉得调用sqrt(n)
不会那么快,因为计算小数部分也需要时间。
所以我的问题是,
我们可以得到唯一的sqrt(n)的整数部分,而不计算的实际值sqrt(n)
算法应该比sqrt(n)
更快(在<math.h>
或<cmath>
)?
如果可能的话,你也可以在asm
块中编写代码。
我会尝试快速反向平方根技巧。
这是一种非常好的近似1/sqrt(n)
没有任何分支,基于某些位移操作,因此不便携(特别是在32位和64位平台之间)。
一旦你得到它,你只需要反转结果,并采取整数部分。
当然,可能会有更快的技巧,因为这个技巧有点复杂。
编辑 :让我们来做!
先帮一个小帮手:
// benchmark.h
#include <sys/time.h>
template <typename Func>
double benchmark(Func f, size_t iterations)
{
f();
timeval a, b;
gettimeofday(&a, 0);
for (; iterations --> 0;)
{
f();
}
gettimeofday(&b, 0);
return (b.tv_sec * (unsigned int)1e6 + b.tv_usec) -
(a.tv_sec * (unsigned int)1e6 + a.tv_usec);
}
然后主体:
#include <iostream>
#include <cmath>
#include "benchmark.h"
class Sqrt
{
public:
Sqrt(int n): _number(n) {}
int operator()() const
{
double d = _number;
return static_cast<int>(std::sqrt(d) + 0.5);
}
private:
int _number;
};
// http://www.codecodex.com/wiki/Calculate_an_integer_square_root
class IntSqrt
{
public:
IntSqrt(int n): _number(n) {}
int operator()() const
{
int remainder = _number;
if (remainder < 0) { return 0; }
int place = 1 <<(sizeof(int)*8 -2);
while (place > remainder) { place /= 4; }
int root = 0;
while (place)
{
if (remainder >= root + place)
{
remainder -= root + place;
root += place*2;
}
root /= 2;
place /= 4;
}
return root;
}
private:
int _number;
};
// http://en.wikipedia.org/wiki/Fast_inverse_square_root
class FastSqrt
{
public:
FastSqrt(int n): _number(n) {}
int operator()() const
{
float number = _number;
float x2 = number * 0.5F;
float y = number;
long i = *(long*)&y;
//i = (long)0x5fe6ec85e7de30da - (i >> 1);
i = 0x5f3759df - (i >> 1);
y = *(float*)&i;
y = y * (1.5F - (x2*y*y));
y = y * (1.5F - (x2*y*y)); // let's be precise
return static_cast<int>(1/y + 0.5f);
}
private:
int _number;
};
int main(int argc, char* argv[])
{
if (argc != 3) {
std::cerr << "Usage: %prog integer iterationsn";
return 1;
}
int n = atoi(argv[1]);
int it = atoi(argv[2]);
assert(Sqrt(n)() == IntSqrt(n)() &&
Sqrt(n)() == FastSqrt(n)() && "Different Roots!");
std::cout << "sqrt(" << n << ") = " << Sqrt(n)() << "n";
double time = benchmark(Sqrt(n), it);
double intTime = benchmark(IntSqrt(n), it);
double fastTime = benchmark(FastSqrt(n), it);
std::cout << "Number iterations: " << it << "n"
"Sqrt computation : " << time << "n"
"Int computation : " << intTime << "n"
"Fast computation : " << fastTime << "n";
return 0;
}
结果是:
sqrt(82) = 9
Number iterations: 4096
Sqrt computation : 56
Int computation : 217
Fast computation : 119
// Note had to tweak the program here as Int here returns -1 :/
sqrt(2147483647) = 46341 // real answer sqrt(2 147 483 647) = 46 340.95
Number iterations: 4096
Sqrt computation : 57
Int computation : 313
Fast computation : 119
如预期的那样,快速计算性能比Int计算好得多。
哦,顺便说一句, sqrt
更快:)
编辑:这个答案是愚蠢的 - 使用(int) sqrt(i)
使用适当的设置进行分析后( -march=native -m64 -O3
),上述过程要快得多。
好吧,有点老问题,但“最快”的答案还没有给出。 最快的(我认为)是二进制平方根算法,在这篇Embedded.com文章中有详细解释。
它基本上归结为:
unsigned short isqrt(unsigned long a) {
unsigned long rem = 0;
int root = 0;
int i;
for (i = 0; i < 16; i++) {
root <<= 1;
rem <<= 2;
rem += a >> 30;
a <<= 2;
if (root < rem) {
root++;
rem -= root;
root++;
}
}
return (unsigned short) (root >> 1);
}
在我的机器上(Q6600,Ubuntu 10.10),我通过取数字1-100000000的平方根进行配置。 使用iqsrt(i)
耗时2750毫秒。 使用(unsigned short) sqrt((float) i)
花了3600ms。 这是使用g++ -O3
。 使用-ffast-math
编译选项的时间分别是2100ms和3100ms。 请注意,这甚至不使用单行汇编器,因此它可能仍然更快。
上面的代码适用于C和C ++,并且对Java也有小的语法变化。
在有限的范围内更好的是二分查找。 在我的机器上,这个版本将水面以上的版本吹出了4倍。可悲的是,它的范围非常有限:
#include <stdint.h>
const uint16_t squares[] = {
0, 1, 4, 9,
16, 25, 36, 49,
64, 81, 100, 121,
144, 169, 196, 225,
256, 289, 324, 361,
400, 441, 484, 529,
576, 625, 676, 729,
784, 841, 900, 961,
1024, 1089, 1156, 1225,
1296, 1369, 1444, 1521,
1600, 1681, 1764, 1849,
1936, 2025, 2116, 2209,
2304, 2401, 2500, 2601,
2704, 2809, 2916, 3025,
3136, 3249, 3364, 3481,
3600, 3721, 3844, 3969,
4096, 4225, 4356, 4489,
4624, 4761, 4900, 5041,
5184, 5329, 5476, 5625,
5776, 5929, 6084, 6241,
6400, 6561, 6724, 6889,
7056, 7225, 7396, 7569,
7744, 7921, 8100, 8281,
8464, 8649, 8836, 9025,
9216, 9409, 9604, 9801,
10000, 10201, 10404, 10609,
10816, 11025, 11236, 11449,
11664, 11881, 12100, 12321,
12544, 12769, 12996, 13225,
13456, 13689, 13924, 14161,
14400, 14641, 14884, 15129,
15376, 15625, 15876, 16129,
16384, 16641, 16900, 17161,
17424, 17689, 17956, 18225,
18496, 18769, 19044, 19321,
19600, 19881, 20164, 20449,
20736, 21025, 21316, 21609,
21904, 22201, 22500, 22801,
23104, 23409, 23716, 24025,
24336, 24649, 24964, 25281,
25600, 25921, 26244, 26569,
26896, 27225, 27556, 27889,
28224, 28561, 28900, 29241,
29584, 29929, 30276, 30625,
30976, 31329, 31684, 32041,
32400, 32761, 33124, 33489,
33856, 34225, 34596, 34969,
35344, 35721, 36100, 36481,
36864, 37249, 37636, 38025,
38416, 38809, 39204, 39601,
40000, 40401, 40804, 41209,
41616, 42025, 42436, 42849,
43264, 43681, 44100, 44521,
44944, 45369, 45796, 46225,
46656, 47089, 47524, 47961,
48400, 48841, 49284, 49729,
50176, 50625, 51076, 51529,
51984, 52441, 52900, 53361,
53824, 54289, 54756, 55225,
55696, 56169, 56644, 57121,
57600, 58081, 58564, 59049,
59536, 60025, 60516, 61009,
61504, 62001, 62500, 63001,
63504, 64009, 64516, 65025
};
inline int isqrt(uint16_t x) {
const uint16_t *p = squares;
if (p[128] <= x) p += 128;
if (p[ 64] <= x) p += 64;
if (p[ 32] <= x) p += 32;
if (p[ 16] <= x) p += 16;
if (p[ 8] <= x) p += 8;
if (p[ 4] <= x) p += 4;
if (p[ 2] <= x) p += 2;
if (p[ 1] <= x) p += 1;
return p - squares;
}
一个32位版本可以在这里下载:https://gist.github.com/3481770
虽然我怀疑你可以通过搜索“快速整数平方根”找到很多选项,但下面是一些可能运作良好的新想法(每个独立的,或者你可以合并它们):
static const
数组,并在其上执行快速无分叉二进制搜索。 数组中的结果索引是平方根。