Speed up bitstring/bit operations in Python?
I wrote a prime number generator using Sieve of Eratosthenes and Python 3.1. The code runs correctly and gracefully at 0.32 seconds on ideone.com to generate prime numbers up to 1,000,000.
# from bitstring import BitString
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
yield 2
sub_limit = int(limit**0.5)
flags = [False, False] + [True] * (limit - 2)
# flags = BitString(limit)
# Step through all the odd numbers
for i in range(3, limit, 2):
if flags[i] is False:
# if flags[i] is True:
continue
yield i
# Exclude further multiples of the current prime number
if i <= sub_limit:
for j in range(i*3, limit, i<<1):
flags[j] = False
# flags[j] = True
The problem is, I run out of memory when I try to generate numbers up to 1,000,000,000.
flags = [False, False] + [True] * (limit - 2)
MemoryError
As you can imagine, allocating 1 billion boolean values (1 byte 4 or 8 bytes (see comment) each in Python) is really not feasible, so I looked into bitstring. I figured, using 1 bit for each flag would be much more memory-efficient. However, the program's performance dropped drastically - 24 seconds runtime, for prime number up to 1,000,000. This is probably due to the internal implementation of bitstring.
You can comment/uncomment the three lines to see what I changed to use BitString, as the code snippet above.
My question is, is there a way to speed up my program, with or without bitstring?
Edit: Please test the code yourself before posting. I can't accept answers that run slower than my existing code, naturally.
Edit again:
I've compiled a list of benchmarks on my machine.
There are a couple of small optimizations for your version. By reversing the roles of True and False, you can change " if flags[i] is False:
" to " if flags[i]:
". And the starting value for the second range
statement can be i*i
instead of i*3
. Your original version takes 0.166 seconds on my system. With those changes, the version below takes 0.156 seconds on my system.
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
yield 2
sub_limit = int(limit**0.5)
flags = [True, True] + [False] * (limit - 2)
# Step through all the odd numbers
for i in range(3, limit, 2):
if flags[i]:
continue
yield i
# Exclude further multiples of the current prime number
if i <= sub_limit:
for j in range(i*i, limit, i<<1):
flags[j] = True
This doesn't help your memory issue, though.
Moving into the world of C extensions, I used the development version of gmpy. (Disclaimer: I'm one of the maintainers.) The development version is called gmpy2 and supports mutable integers called xmpz. Using gmpy2 and the following code, I have a running time of 0.140 seconds. Running time for a limit of 1,000,000,000 is 158 seconds.
import gmpy2
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
yield 2
sub_limit = int(limit**0.5)
# Actual number is 2*bit_position + 1.
oddnums = gmpy2.xmpz(1)
current = 0
while True:
current += 1
current = oddnums.bit_scan0(current)
prime = 2 * current + 1
if prime > limit:
break
yield prime
# Exclude further multiples of the current prime number
if prime <= sub_limit:
for j in range(2*current*(current+1), limit>>1, prime):
oddnums.bit_set(j)
Pushing optimizations, and sacrificing clarity, I get running times of 0.107 and 123 seconds with the following code:
import gmpy2
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
yield 2
sub_limit = int(limit**0.5)
# Actual number is 2*bit_position + 1.
oddnums = gmpy2.xmpz(1)
f_set = oddnums.bit_set
f_scan0 = oddnums.bit_scan0
current = 0
while True:
current += 1
current = f_scan0(current)
prime = 2 * current + 1
if prime > limit:
break
yield prime
# Exclude further multiples of the current prime number
if prime <= sub_limit:
list(map(f_set,range(2*current*(current+1), limit>>1, prime)))
Edit: Based on this exercise, I modified gmpy2 to accept xmpz.bit_set(iterator)
. Using the following code, the run time for all primes less 1,000,000,000 is 56 seconds for Python 2.7 and 74 seconds for Python 3.2. (As noted in the comments, xrange
is faster than range
.)
import gmpy2
try:
range = xrange
except NameError:
pass
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
yield 2
sub_limit = int(limit**0.5)
oddnums = gmpy2.xmpz(1)
f_scan0 = oddnums.bit_scan0
current = 0
while True:
current += 1
current = f_scan0(current)
prime = 2 * current + 1
if prime > limit:
break
yield prime
if prime <= sub_limit:
oddnums.bit_set(iter(range(2*current*(current+1), limit>>1, prime)))
Edit #2: One more try! I modified gmpy2 to accept xmpz.bit_set(slice)
. Using the following code, the run time for all primes less 1,000,000,000 is about 40 seconds for both Python 2.7 and Python 3.2.
from __future__ import print_function
import time
import gmpy2
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
yield 2
sub_limit = int(limit**0.5)
flags = gmpy2.xmpz(1)
# pre-allocate the total length
flags.bit_set((limit>>1)+1)
f_scan0 = flags.bit_scan0
current = 0
while True:
current += 1
current = f_scan0(current)
prime = 2 * current + 1
if prime > limit:
break
yield prime
if prime <= sub_limit:
flags.bit_set(slice(2*current*(current+1), limit>>1, prime))
start = time.time()
result = list(prime_numbers(1000000000))
print(time.time() - start)
Edit #3: I've updated gmpy2 to properly support slicing at the bit level of an xmpz. No change in performance but a much nice API. I have done a little tweaking and I've got the time down to about 37 seconds. (See Edit #4 to changes in gmpy2 2.0.0b1.)
from __future__ import print_function
import time
import gmpy2
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
sub_limit = int(limit**0.5)
flags = gmpy2.xmpz(1)
flags[(limit>>1)+1] = True
f_scan0 = flags.bit_scan0
current = 0
prime = 2
while prime <= sub_limit:
yield prime
current += 1
current = f_scan0(current)
prime = 2 * current + 1
flags[2*current*(current+1):limit>>1:prime] = True
while prime <= limit:
yield prime
current += 1
current = f_scan0(current)
prime = 2 * current + 1
start = time.time()
result = list(prime_numbers(1000000000))
print(time.time() - start)
Edit #4: I made some changes in gmpy2 2.0.0b1 that break the previous example. gmpy2 no longer treats True as a special value that provides an infinite source of 1-bits. -1 should be used instead.
from __future__ import print_function
import time
import gmpy2
def prime_numbers(limit=1000000):
'''Prime number generator. Yields the series
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ...
using Sieve of Eratosthenes.
'''
sub_limit = int(limit**0.5)
flags = gmpy2.xmpz(1)
flags[(limit>>1)+1] = 1
f_scan0 = flags.bit_scan0
current = 0
prime = 2
while prime <= sub_limit:
yield prime
current += 1
current = f_scan0(current)
prime = 2 * current + 1
flags[2*current*(current+1):limit>>1:prime] = -1
while prime <= limit:
yield prime
current += 1
current = f_scan0(current)
prime = 2 * current + 1
start = time.time()
result = list(prime_numbers(1000000000))
print(time.time() - start)
Edit #5: I've made some enhancements to gmpy2 2.0.0b2. You can now iterate over all the bits that are either set or clear. Running time has improved by ~30%.
from __future__ import print_function
import time
import gmpy2
def sieve(limit=1000000):
'''Returns a generator that yields the prime numbers up to limit.'''
# Increment by 1 to account for the fact that slices do not include
# the last index value but we do want to include the last value for
# calculating a list of primes.
sieve_limit = gmpy2.isqrt(limit) + 1
limit += 1
# Mark bit positions 0 and 1 as not prime.
bitmap = gmpy2.xmpz(3)
# Process 2 separately. This allows us to use p+p for the step size
# when sieving the remaining primes.
bitmap[4 : limit : 2] = -1
# Sieve the remaining primes.
for p in bitmap.iter_clear(3, sieve_limit):
bitmap[p*p : limit : p+p] = -1
return bitmap.iter_clear(2, limit)
if __name__ == "__main__":
start = time.time()
result = list(sieve(1000000000))
print(time.time() - start)
print(len(result))
Okay, here's a (near complete) comprehensive benchmarking I've done tonight to see which code runs the fastest. Hopefully someone will find this list useful. I omitted anything that takes more than 30 seconds to complete on my machine.
I would like to thank everyone that put in an input. I've gained a lot of insight from your efforts, and I hope you have too.
My machine: AMD ZM-86, 2.40 Ghz Dual-Core, with 4GB of RAM. This is a HP Touchsmart Tx2 laptop. Note that while I may have linked to a pastebin, I benchmarked all of the following on my own machine.
I will add the gmpy2 benchmark once I am able to build it.
All of the benchmarks are tested in Python 2.6 x86
Returning a list of prime numbers n up to 1,000,000: (Using Python generators)
Sebastian's numpy generator version (updated) - 121 ms @
Mark's Sieve + Wheel - 154 ms
Robert's version with slicing - 159 ms
My improved version with slicing - 205 ms
Numpy generator with enumerate - 249 ms @
Mark's Basic Sieve - 317 ms
casevh's improvement on my original solution - 343 ms
My modified numpy generator solution - 407 ms
My original method in the question - 409 ms
Bitarray Solution - 414 ms @
Pure Python with bytearray - 1394 ms @
Scott's BitString solution - 6659 ms @
'@' means this method is capable of generating up to n < 1,000,000,000 on my machine setup.
In addition, if you don't need the generator and just want the whole list at once:
numpy solution from RosettaCode - 32 ms @
(The numpy solution is also capable of generating up to 1 billion, which took 61.6259 seconds. I suspect the memory was swapped once, hence the double time.)
OK, so this is my second answer, but as speed is of the essence I thought that I had to mention the bitarray module - even though it's bitstring's nemesis :). It's ideally suited to this case as not only is it a C extension (and so faster than pure Python has a hope of being), but it also supports slice assignments. It's not yet available for Python 3 though.
I haven't even tried to optimise this, I just rewrote the bitstring version. On my machine I get 0.16 seconds for primes under a million.
For a billion, it runs perfectly well and completes in 2 minutes 31 seconds.
import bitarray
def prime_bitarray(limit=1000000):
yield 2
flags = bitarray.bitarray(limit)
flags.setall(False)
sub_limit = int(limit**0.5)
for i in xrange(3, limit, 2):
if not flags[i]:
yield i
if i <= sub_limit:
flags[3*i:limit:i*2] = True
链接地址: http://www.djcxy.com/p/86622.html