How to make two markers share the same label in the legend using matplotlib?

What I want is like this: 在这里输入图像描述

What I get is this: 在这里输入图像描述

So how to merge the markers into one label? also for the lines, for the lines, of course, u can realize it by not assigning label to the second line while using the same linetype, but for the markers, you can not, since they are of different shapes.


I think it's best to use a full legend - otherwise, how will your readers know the difference between the two models, or the two datasets? I would do it this way:

在这里输入图像描述

But, if you really want to do it your way, you can use a custom legend as shown in this guide. You'll need to create your own class, like they do, that defines the legend_artist method, which then adds squares and circles as appropriate. Here is the plot generated and the code used to generate it:

在这里输入图像描述

#!/usr/bin/env python
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np


# ==================================
# Define the form of the function
# ==================================
def model(x, A=190, k=1):
    return A * np.exp(-k*x/50)

# ==================================
# How many data points are generated
# ==================================
num_samples = 15

# ==================================
# Create data for plots
# ==================================
x_model = np.linspace(0, 130, 200)

x_data1 = np.random.rand(num_samples) * 130
x_data1.sort()

x_data2 = np.random.rand(num_samples) * 130
x_data2.sort()

data1 = model(x_data1, k=1) * (1 + np.random.randn(num_samples) * 0.2)
data2 = model(x_data2, k=2) * (1 + np.random.randn(num_samples) * 0.15)

model1 = model(x_model, k=1)
model2 = model(x_model, k=2)

# ==================================
# Plot everything normally
# ==================================
fig = plt.figure()
ax = fig.add_subplot('111')
ax.plot(x_data1, data1, 'ok', markerfacecolor='none', label='Data (k=1)')
ax.plot(x_data2, data2, 'sk', markeredgecolor='0.5', markerfacecolor='0.5', label='Data (k=2)')
ax.plot(x_model, model1, '-k', label='Model (k=1)')
ax.plot(x_model, model2, '--k', label='Model (k=2)')

# ==================================
# Format plot
# ==================================
ax.set_xlabel('Distance from heated face($10^{-2}$ m)')
ax.set_ylabel('Temperature ($^circ$C)')
ax.set_xlim((0, 130))
ax.set_title('Normal way to plot')
ax.legend()
fig.tight_layout()

plt.show()


# ==================================
# ==================================
# Do it again, but with custom
# legend
# ==================================
# ==================================
class AnyObject(object):
    pass


class data_handler(object):
    def legend_artist(self, legend, orig_handle, fontsize, handlebox):
        scale = fontsize / 22
        x0, y0 = handlebox.xdescent, handlebox.ydescent
        width, height = handlebox.width, handlebox.height
        patch_sq = mpatches.Rectangle([x0, y0 + height/2 * (1 - scale) ], height * scale, height * scale, facecolor='0.5',
                edgecolor='0.5', transform=handlebox.get_transform())
        patch_circ = mpatches.Circle([x0 + width - height/2, y0 + height/2], height/2 * scale, facecolor='none',
                edgecolor='black', transform=handlebox.get_transform())

        handlebox.add_artist(patch_sq)
        handlebox.add_artist(patch_circ)
        return patch_sq

# ==================================
# Plot everything
# ==================================
fig = plt.figure()
ax = fig.add_subplot('111')
d1 = ax.plot(x_data1, data1, 'ok', markerfacecolor='none', label='Data (k=2)')
d2 = ax.plot(x_data2, data2, 'sk', markeredgecolor='0.5', markerfacecolor='0.5', label='Data (k=1)')
m1 = ax.plot(x_model, model1, '-k', label='Model (k=1)')
m2 = ax.plot(x_model, model2, '-k', label='Model (k=2)')

# ax.legend([d1], handler_map={ax.plot: data_handler()})
ax.legend([AnyObject(), m1[0]], ['Data', 'Model'], handler_map={AnyObject: data_handler()})

# ==================================
# Format plot
# ==================================
ax.set_xlabel('Distance from heated face($10^{-2}$ m)')
ax.set_ylabel('Temperature ($^circ$C)')
ax.set_xlim((0, 130))
ax.set_title('Custom legend')
fig.tight_layout()

plt.show()

Here is a new solution that will plot any collection of markers with the same label. I have not figured out how to make it work with markers from a line plot, but you can probably do a scatter plot on top of a line plot if you need to.

from matplotlib import pyplot as plt
import matplotlib.collections as mcol
import matplotlib.transforms as mtransforms
import numpy as np
from matplotlib.legend_handler import HandlerPathCollection
from matplotlib import cm


class HandlerMultiPathCollection(HandlerPathCollection):
    """
    Handler for PathCollections, which are used by scatter
    """
    def create_collection(self, orig_handle, sizes, offsets, transOffset):
        p = type(orig_handle)(orig_handle.get_paths(), sizes=sizes,
                              offsets=offsets,
                              transOffset=transOffset,
                              )
        return p

fig, ax = plt.subplots()
#make some data to plot
x = np.arange(0, 100, 10)
models = [.05 * x, 8 * np.exp(- .1 * x), np.log(x + 1), .01 * x]
tests = [model + np.random.rand(len(model)) - .5 for model in models]
#make colors and markers
colors = cm.brg(np.linspace(0, 1, len(models)))
markers = ['o', 'D', '*', 's']
markersize = 50
plots = []
#plot points and lines
for i in xrange(len(models)):
    line, = plt.plot(x, models[i], linestyle = 'dashed', color = 'black', label = 'Model')
    plot = plt.scatter(x, tests[i], c = colors[i], s = markersize, marker = markers[i])
    plots.append(plot)

#get attributes
paths = []
sizes = []
facecolors = []
edgecolors = []
for plot in plots:
    paths.append(plot.get_paths()[0])
    sizes.append(plot.get_sizes()[0])
    edgecolors.append(plot.get_edgecolors()[0])
    facecolors.append(plot.get_facecolors()[0])

#make proxy artist out of a collection of markers
PC = mcol.PathCollection(paths, sizes, transOffset = ax.transData, facecolors = colors, edgecolors = edgecolors)
PC.set_transform(mtransforms.IdentityTransform())
plt.legend([PC, line], ['Test', 'Model'], handler_map = {type(PC) : HandlerMultiPathCollection()}, scatterpoints = len(paths), scatteryoffsets = [.5], handlelength = len(paths))
plt.show()

与共享标签的标记一起绘制

I have a solution for you if you're willing to use all circles for markers and differentiate by color only. You can use a circle collection to represent the markers, and then have a legend label for the collection as a whole.

Example code:

import matplotlib.pyplot as plt
import matplotlib.collections as collections
from matplotlib import cm
import numpy as np

#make some data to plot
x = np.arange(0, 100, 10)
models = [.05 * x, 8 * np.exp(- .1 * x), np.log(x + 1), .01 * x]
tests = [model + np.random.rand(len(model)) - .5 for model in models]
#make colors
colors = cm.brg(np.linspace(0, 1, len(models)))
markersize = 50
#plot points and lines
for i in xrange(len(models)):
    line, = plt.plot(x, models[i], linestyle = 'dashed', color = 'black', label = 'Model')
    plt.scatter(x, tests[i], c = colors[i], s = markersize)
#create collection of circles corresponding to markers
circles = collections.CircleCollection([markersize] * len(models), facecolor = colors)
#make the legend -- scatterpoints needs to be the same as the number 
#of markers so that all the markers show up in the legend
plt.legend([circles, line], ['Test', 'Model'], scatterpoints = len(models), scatteryoffsets = [.5], handlelength = len(models))
plt.show()

使用合并图例标签的散点图和线图


I also found this link very useful (code below), it's an easier way to handle this issue. It's basically using a list of legend handles to make one of the markers of the first handle invisible and overplot it with the marker of the second handle. This way, you have both markers next to each other with one label.

fig, ax = plt.subplots()
p1 = ax.scatter([0.1],[0.5],c='r',marker='s')
p2 = ax.scatter([0.3],[0.2],c='b',marker='o')
l = ax.legend([(p1,p2)],['points'],scatterpoints=2)

With the above code, a TupleHandler is used to create legend handles which simply overplot two handles (there are red squares behind the blue circles if you look carefylly. What you want to do is make the second marker of first handle and the first marker of the second handle invisible. Unfortunately, the TupleHandler is a rather recent addition and you need a special function to get all the handles. Otherwise, you can use the Legend.legendHandles attribute (it only show the first handle for the TupleHandler ).

def get_handle_lists(l):
    """returns a list of lists of handles.
    """
    tree = l._legend_box.get_children()[1]

    for column in tree.get_children():
        for row in column.get_children():
            yield row.get_children()[0].get_children()
handles_list = list(get_handle_lists(l))
handles = handles_list[0] # handles is a list of two PathCollection.
                          # The first one is for red squares, and the second
                          # is for blue circles.
handles[0].set_facecolors(["r", "none"]) # for the fist
                   # PathCollection, make the
                   # second marker invisible by
                   # setting their facecolor and
                   # edgecolor to "none."
handles[0].set_edgecolors(["k", "none"])
handles[1].set_facecolors(["none", "b"])
handles[1].set_edgecolors(["none", "k"])
fig

链接地址: http://www.djcxy.com/p/86782.html

上一篇: 枚举中的代码重复继承一个通用接口

下一篇: 如何使两个标记使用matplotlib在图例中共享相同的标签?