OpenCV: check if pixel is within bounding rectangle, separated by contour line

I have an image mask, with some contours I got from Canny. I can calculate a bounding rectangle (with a given angle that is fix).

Now I need to separate the 2 areas to the left and right of that rectangle. How can I do that?

Please note that I want to work with the area within the rectangle, not the pixels that are contours.

Edit

This is how I obtain each bounding rectangle from the mask:

cv::Mat img_edges; // mask with contours

// Apply clustering to the edge mask from here
// http://stackoverflow.com/questions/33825249/opencv-euclidean-clustering-vs-findcontours?noredirect=1#comment55433731_33825249

// Find boundary rectangle
for (auto &contour: contours) { // Iterate over every contour cluster
  cv::Mat Srot = cv::getRotationMatrix2D(cv::Point2f(float(img_edges.cols) / 2., float(img_edges.rows) / 2.), -ILLUMINATION_ANGLE_DEG, 1.0);

  cv::transform(contour, contour, Srot);

  float min_x, min_y, max_x, max_y;

  min_x = min_y = std::numeric_limits<float>::max();
  max_x = max_y = -std::numeric_limits<float>::max();

  // Simply find edges of aligned rectangle, then rotate back by inverse of Srot
}

Ok let's assume I can get a connected component. How can I proceed then?

From the comments to the question we agreed that this procedure should work for axis aligned rectangles. This won't lose generality, since you can rotate a rotated rectangle to be axis aligned, apply this procedure, and then rotate points back.

Starting from a sample image with some edges, like:

You can get something like this, where blue is the left part in the bounding box separated by the edge, red is the right part:

This algorithm is probably not the most clever way of doing it, but works ok in practice.

After you found the bounding box of each edge:

  • Create a matrix tmp on the given roi, plus 1 column on the left and 1 one the right. This will make the algorithm robust to particular cases.
  • Shift all boundary point in the new coordinate system, and draw then into tmp .
  • Apply floodFill algorithm to find left points. The seed is the top left corner of tmp .
  • Apply floodFill algorithm to find right points. The seed is the top right corner of tmp .
  • Retrieve the points in the two areas, shifting to original coordinate system.
  • Here the commented code, please ping me if something is not clear:

    #include <opencv2/opencv.hpp>
    #include <vector>
    using namespace std;
    using namespace cv;
    
    
    void separateAreas(const Rect& roi, const vector<Point>& points, vector<Point>& left, vector<Point>& right)
    {
        left.clear();
        right.clear();
    
        // Temporary matrix
        // 0 : background pixels
        // 1 : boundary pixels
        // 2 : left pixels
        // 3 : right pixels
        Mat1b tmp(roi.height, roi.width + 2, uchar(0));
    
        // Shift points to roi origin, i.e tmp(0,1)
        vector<Point> pts(points);
        for (int i = 0; i < points.size(); ++i)
        {
            pts[i] -= roi.tl();
    
            // Draw boundary on tmp matrix
            tmp(pts[i] + Point(1,0)) = 1;
        }
    
        // Fill left area, seed top left point
        floodFill(tmp, Point(0, 0), Scalar(2));
    
        // Fill right area, seed top right point
        floodFill(tmp, Point(tmp.cols-1, 0), Scalar(3));
    
        // Find left and right points
        findNonZero(tmp.colRange(1, tmp.cols - 1) == 2, left);
        findNonZero(tmp.colRange(1, tmp.cols - 1) == 3, right);
    
        // Shift back
        for (int i = 0; i < left.size(); ++i)
        {
            left[i] += roi.tl();
        }
        for (int i = 0; i < right.size(); ++i)
        {
            right[i] += roi.tl();
        }
    }
    
    
    int main()
    {
        Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
    
        Mat3b res;
        cvtColor(img, res, COLOR_GRAY2BGR);
    
        vector<vector<Point>> contours;
        findContours(img.clone(), contours, RETR_LIST, CV_CHAIN_APPROX_NONE);
    
        for (int i = 0; i < contours.size(); ++i)
        {
            Rect roi = boundingRect(contours[i]);
            //rectangle(res, roi, Scalar(0,255,0));
    
            vector<Point> left, right;
            separateAreas(roi, contours[i], left, right);
    
            // Draw areas on res
            for (int j = 0; j < left.size(); ++j)
            {
                res(left[j]) = Vec3b(255,0,0); // Blue for left
            }
            for (int j = 0; j < right.size(); ++j)
            {
                res(right[j]) = Vec3b(0, 0, 255); // Red for right
            }
        }
    
        imshow("Image", img);
        imshow("Result", res);
        waitKey();
    
        return 0;
    }
    
    链接地址: http://www.djcxy.com/p/89726.html

    上一篇: OpenCV将ROI之外的像素设置为ROI内的最近像素值

    下一篇: OpenCV:检查像素是否在边界矩形内,由等高线分隔