Is 'switch' faster than 'if'?

Is a switch statement actually faster than an if statement?

I ran the code below on Visual Studio 2010's x64 C++ compiler with the /Ox flag:

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

#define MAX_COUNT (1 << 29)
size_t counter = 0;

size_t testSwitch()
{
    clock_t start = clock();
    size_t i;
    for (i = 0; i < MAX_COUNT; i++)
    {
        switch (counter % 4 + 1)
        {
            case 1: counter += 4; break;
            case 2: counter += 3; break;
            case 3: counter += 2; break;
            case 4: counter += 1; break;
        }
    }
    return 1000 * (clock() - start) / CLOCKS_PER_SEC;
}

size_t testIf()
{
    clock_t start = clock();
    size_t i;
    for (i = 0; i < MAX_COUNT; i++)
    {
        const size_t c = counter % 4 + 1;
        if (c == 1) { counter += 4; }
        else if (c == 2) { counter += 3; }
        else if (c == 3) { counter += 2; }
        else if (c == 4) { counter += 1; }
    }
    return 1000 * (clock() - start) / CLOCKS_PER_SEC;
}

int main()
{
    printf("Starting...n");
    printf("Switch statement: %u msn", testSwitch());
    printf("If     statement: %u msn", testIf());
}

and got these results:

Switch statement: 5261 ms
If statement: 5196 ms

From what I've learned, switch statements apparently use jump tables to optimize the branching.

Questions:

  • What would a basic jump table look like, in x86 or x64?

  • Is this code using a jump table?

  • Why is there no performance difference in this example? Is there any situation in which there is a significant performance difference?


  • Disassembly of the code:

    testIf:
    
    13FE81B10 sub  rsp,48h 
    13FE81B14 call qword ptr [__imp_clock (13FE81128h)] 
    13FE81B1A mov  dword ptr [start],eax 
    13FE81B1E mov  qword ptr [i],0 
    13FE81B27 jmp  testIf+26h (13FE81B36h) 
    13FE81B29 mov  rax,qword ptr [i] 
    13FE81B2E inc  rax  
    13FE81B31 mov  qword ptr [i],rax 
    13FE81B36 cmp  qword ptr [i],20000000h 
    13FE81B3F jae  testIf+0C3h (13FE81BD3h) 
    13FE81B45 xor  edx,edx 
    13FE81B47 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81B4E mov  ecx,4 
    13FE81B53 div  rax,rcx 
    13FE81B56 mov  rax,rdx 
    13FE81B59 inc  rax  
    13FE81B5C mov  qword ptr [c],rax 
    13FE81B61 cmp  qword ptr [c],1 
    13FE81B67 jne  testIf+6Dh (13FE81B7Dh) 
    13FE81B69 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81B70 add  rax,4 
    13FE81B74 mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81B7B jmp  testIf+0BEh (13FE81BCEh) 
    13FE81B7D cmp  qword ptr [c],2 
    13FE81B83 jne  testIf+89h (13FE81B99h) 
    13FE81B85 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81B8C add  rax,3 
    13FE81B90 mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81B97 jmp  testIf+0BEh (13FE81BCEh) 
    13FE81B99 cmp  qword ptr [c],3 
    13FE81B9F jne  testIf+0A5h (13FE81BB5h) 
    13FE81BA1 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81BA8 add  rax,2 
    13FE81BAC mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81BB3 jmp  testIf+0BEh (13FE81BCEh) 
    13FE81BB5 cmp  qword ptr [c],4 
    13FE81BBB jne  testIf+0BEh (13FE81BCEh) 
    13FE81BBD mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81BC4 inc  rax  
    13FE81BC7 mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81BCE jmp  testIf+19h (13FE81B29h) 
    13FE81BD3 call qword ptr [__imp_clock (13FE81128h)] 
    13FE81BD9 sub  eax,dword ptr [start] 
    13FE81BDD imul eax,eax,3E8h 
    13FE81BE3 cdq       
    13FE81BE4 mov  ecx,3E8h 
    13FE81BE9 idiv eax,ecx 
    13FE81BEB cdqe      
    13FE81BED add  rsp,48h 
    13FE81BF1 ret       
    

    testSwitch:
    
    13FE81C00 sub  rsp,48h 
    13FE81C04 call qword ptr [__imp_clock (13FE81128h)] 
    13FE81C0A mov  dword ptr [start],eax 
    13FE81C0E mov  qword ptr [i],0 
    13FE81C17 jmp  testSwitch+26h (13FE81C26h) 
    13FE81C19 mov  rax,qword ptr [i] 
    13FE81C1E inc  rax  
    13FE81C21 mov  qword ptr [i],rax 
    13FE81C26 cmp  qword ptr [i],20000000h 
    13FE81C2F jae  testSwitch+0C5h (13FE81CC5h) 
    13FE81C35 xor  edx,edx 
    13FE81C37 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81C3E mov  ecx,4 
    13FE81C43 div  rax,rcx 
    13FE81C46 mov  rax,rdx 
    13FE81C49 inc  rax  
    13FE81C4C mov  qword ptr [rsp+30h],rax 
    13FE81C51 cmp  qword ptr [rsp+30h],1 
    13FE81C57 je   testSwitch+73h (13FE81C73h) 
    13FE81C59 cmp  qword ptr [rsp+30h],2 
    13FE81C5F je   testSwitch+87h (13FE81C87h) 
    13FE81C61 cmp  qword ptr [rsp+30h],3 
    13FE81C67 je   testSwitch+9Bh (13FE81C9Bh) 
    13FE81C69 cmp  qword ptr [rsp+30h],4 
    13FE81C6F je   testSwitch+0AFh (13FE81CAFh) 
    13FE81C71 jmp  testSwitch+0C0h (13FE81CC0h) 
    13FE81C73 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81C7A add  rax,4 
    13FE81C7E mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81C85 jmp  testSwitch+0C0h (13FE81CC0h) 
    13FE81C87 mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81C8E add  rax,3 
    13FE81C92 mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81C99 jmp  testSwitch+0C0h (13FE81CC0h) 
    13FE81C9B mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81CA2 add  rax,2 
    13FE81CA6 mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81CAD jmp  testSwitch+0C0h (13FE81CC0h) 
    13FE81CAF mov  rax,qword ptr [counter (13FE835D0h)] 
    13FE81CB6 inc  rax  
    13FE81CB9 mov  qword ptr [counter (13FE835D0h)],rax 
    13FE81CC0 jmp  testSwitch+19h (13FE81C19h) 
    13FE81CC5 call qword ptr [__imp_clock (13FE81128h)] 
    13FE81CCB sub  eax,dword ptr [start] 
    13FE81CCF imul eax,eax,3E8h 
    13FE81CD5 cdq       
    13FE81CD6 mov  ecx,3E8h 
    13FE81CDB idiv eax,ecx 
    13FE81CDD cdqe      
    13FE81CDF add  rsp,48h 
    13FE81CE3 ret       
    

    Update:

    Interesting results here. Not sure why one is faster and one is slower, though.


    There are several optimizations a compiler can make on a switch. I don't think the oft-mentioned "jump-table" is a very useful one though, as it only works when the input can be bounded some way.

    C Pseudocode for a "jump table" would be something like this -- note that the compiler in practice would need to insert some form of if test around the table to ensure that the input was valid in the table. Note also that it only works in the specific case that the input is a run of consecutive numbers.

    If the number of branches in a switch is extremely large, a compiler can do things like using binary search on the values of the switch, which (in my mind) would be a much more useful optimization, as it does significantly increase performance in some scenarios, is as general as a switch is, and does not result in greater generated code size. But to see that, your test code would need a LOT more branches to see any difference.

    To answer your specific questions:

  • Clang generates one that looks like this:

    test_switch(char):                       # @test_switch(char)
            movl    %edi, %eax
            cmpl    $19, %edi
            jbe     .LBB0_1
            retq
    .LBB0_1:
            jmpq    *.LJTI0_0(,%rax,8)
            jmp     void call<0u>()         # TAILCALL
            jmp     void call<1u>()         # TAILCALL
            jmp     void call<2u>()         # TAILCALL
            jmp     void call<3u>()         # TAILCALL
            jmp     void call<4u>()         # TAILCALL
            jmp     void call<5u>()         # TAILCALL
            jmp     void call<6u>()         # TAILCALL
            jmp     void call<7u>()         # TAILCALL
            jmp     void call<8u>()         # TAILCALL
            jmp     void call<9u>()         # TAILCALL
            jmp     void call<10u>()        # TAILCALL
            jmp     void call<11u>()        # TAILCALL
            jmp     void call<12u>()        # TAILCALL
            jmp     void call<13u>()        # TAILCALL
            jmp     void call<14u>()        # TAILCALL
            jmp     void call<15u>()        # TAILCALL
            jmp     void call<16u>()        # TAILCALL
            jmp     void call<17u>()        # TAILCALL
            jmp     void call<18u>()        # TAILCALL
            jmp     void call<19u>()        # TAILCALL
    .LJTI0_0:
            .quad   .LBB0_2
            .quad   .LBB0_3
            .quad   .LBB0_4
            .quad   .LBB0_5
            .quad   .LBB0_6
            .quad   .LBB0_7
            .quad   .LBB0_8
            .quad   .LBB0_9
            .quad   .LBB0_10
            .quad   .LBB0_11
            .quad   .LBB0_12
            .quad   .LBB0_13
            .quad   .LBB0_14
            .quad   .LBB0_15
            .quad   .LBB0_16
            .quad   .LBB0_17
            .quad   .LBB0_18
            .quad   .LBB0_19
            .quad   .LBB0_20
            .quad   .LBB0_21
    
  • I can say that it is not using a jump table -- 4 comparison instructions are clearly visible:

    13FE81C51 cmp  qword ptr [rsp+30h],1 
    13FE81C57 je   testSwitch+73h (13FE81C73h) 
    13FE81C59 cmp  qword ptr [rsp+30h],2 
    13FE81C5F je   testSwitch+87h (13FE81C87h) 
    13FE81C61 cmp  qword ptr [rsp+30h],3 
    13FE81C67 je   testSwitch+9Bh (13FE81C9Bh) 
    13FE81C69 cmp  qword ptr [rsp+30h],4 
    13FE81C6F je   testSwitch+0AFh (13FE81CAFh) 
    

    A jump table based solution does not use comparison at all.

  • Either not enough branches to cause the compiler to generate a jump table, or your compiler simply doesn't generate them. I'm not sure which.
  • EDIT 2014 : There has been some discussion elsewhere from people familiar with the LLVM optimizer saying that the jump table optimization can be important in many scenarios; eg in cases where there is an enumeration with many values and many cases against values in said enumeration. That said, I stand by what I said above in 2011 -- too often I see people thinking "if I make it a switch, it'll be the same time no matter how many cases I have" -- and that's completely false. Even with a jump table you get the indirect jump cost and you pay for entries in the table for each case; and memory bandwidth is a Big Deal on modern hardware.

    Write code for readability. Any compiler worth its salt is going to see an if / else if ladder and transform it into equivalent switch or vice versa if it would be faster to do so.


    To your question:

    1.What would a basic jump table look like, in x86 or x64?

    Jump table is memory address that holds pointer to the labels in something like array structure. following example will help you understand how jump table looks like

    00B14538  D8 09 AB 00 D8 09 AB 00 D8 09 AB 00 D8 09 AB 00  Ø.«.Ø.«.Ø.«.Ø.«.
    00B14548  D8 09 AB 00 D8 09 AB 00 D8 09 AB 00 00 00 00 00  Ø.«.Ø.«.Ø.«.....
    00B14558  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    00B14568  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    

    Where 00B14538 is the pointer to the Jump table , and value like D8 09 AB 00 represents label pointer.

    2.Is this code using a jump table? No in this case.

    3.Why is there no performance difference in this example?

    There is no performance difference because instruction for both case looks same, no jump table.

    4.Is there any situation in which there is a significant performance difference?

    If you have very long sequence of if check, in that case using jump table reduces performance hit but that comes with the cost of memory.

    Motto: Compiler is smart enough handle such case :)


    The compiler is free to compile the switch statement as a code which is equivalent to if-statement, or to create a jump table. It will likely chose one on the other based on what will execute fastest or generate the smallest code somewhat depending on what you have specified in you compiler options -- so worst case it will be the same speed as if-statements

    I would trust the compiler to do the best choice and focus on what makes the code most readable.

    If the number of cases becomes very large a jump table will be much faster than a series of if. However if the steps between the values is very large, then the jump table can become large, and the compiler may choose not to generate one.

    链接地址: http://www.djcxy.com/p/91196.html

    上一篇: 在Android Eclipse中旋转图像时出错

    下一篇: '开关'比'如果'更快?