Stanford Parser and NLTK
Is it possible to use Stanford Parser in NLTK? (I am not talking about Stanford POS.)
EDITED
As of NLTK version 3.1 the instructions of this answer will no longer work. Please follow the instructions on https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software
This answer is kept for legacy purposes on Stackoverflow. The answer does work for NLTK v3.0 though.
Original Answer
Sure, try the following in Python:
import os
from nltk.parse import stanford
os.environ['STANFORD_PARSER'] = '/path/to/standford/jars'
os.environ['STANFORD_MODELS'] = '/path/to/standford/jars'
parser = stanford.StanfordParser(model_path="/location/of/the/englishPCFG.ser.gz")
sentences = parser.raw_parse_sents(("Hello, My name is Melroy.", "What is your name?"))
print sentences
# GUI
for line in sentences:
for sentence in line:
sentence.draw()
Output:
[Tree('ROOT', [Tree('S', [Tree('INTJ', [Tree('UH', ['Hello'])]), Tree(',', [',']), Tree('NP', [Tree('PRP$', ['My']), Tree('NN', ['name'])]), Tree('VP', [Tree('VBZ', ['is']), Tree('ADJP', [Tree('JJ', ['Melroy'])])]), Tree('.', ['.'])])]), Tree('ROOT', [Tree('SBARQ', [Tree('WHNP', [Tree('WP', ['What'])]), Tree('SQ', [Tree('VBZ', ['is']), Tree('NP', [Tree('PRP$', ['your']), Tree('NN', ['name'])])]), Tree('.', ['?'])])])]
Note 1: In this example both the parser & model jars are in the same folder.
Note 2:
Note 3: The englishPCFG.ser.gz file can be found inside the models.jar file (/edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz). Please use come archive manager to 'unzip' the models.jar file.
Note 4: Be sure you are using Java JRE (Runtime Environment) 1.8 also known as Oracle JDK 8. Otherwise you will get: Unsupported major.minor version 52.0.
Installation
Download NLTK v3 from: https://github.com/nltk/nltk. And install NLTK:
sudo python setup.py install
You can use the NLTK downloader to get Stanford Parser, using Python:
import nltk
nltk.download()
Try my example! (don't forget the change the jar paths and change the model path to the ser.gz location)
OR:
Download and install NLTK v3, same as above.
Download the latest version from ( current version filename is stanford-parser-full-2015-01-29.zip): http://nlp.stanford.edu/software/lex-parser.shtml#Download
Extract the standford-parser-full-20xx-xx-xx.zip.
Create a new folder ('jars' in my example). Place the extracted files into this jar folder: stanford-parser-3.xx-models.jar and stanford-parser.jar.
As shown above you can use the environment variables (STANFORD_PARSER & STANFORD_MODELS) to point to this 'jars' folder. I'm using Linux, so if you use Windows please use something like: C://folder//jars.
Open the stanford-parser-3.xx-models.jar using an Archive manager (7zip).
Browse inside the jar file; edu/stanford/nlp/models/lexparser. Again, extract the file called 'englishPCFG.ser.gz'. Remember the location where you extract this ser.gz file.
When creating a StanfordParser instance, you can provide the model path as parameter. This is the complete path to the model, in our case /location/of/englishPCFG.ser.gz.
Try my example! (don't forget the change the jar paths and change the model path to the ser.gz location)
EDITED
Note: The following answer will only work on:
As both tools changes rather quickly and the API might look very different 3-6 months later. Please treat the following answer as temporal and not an eternal fix.
Always refer to https://github.com/nltk/nltk/wiki/Installing-Third-Party-Software for the latest instruction on how to interface Stanford NLP tools using NLTK!!
TL;DR
cd $HOME
# Update / Install NLTK
pip install -U nltk
# Download the Stanford NLP tools
wget http://nlp.stanford.edu/software/stanford-ner-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-postagger-full-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
# Extract the zip file.
unzip stanford-ner-2015-04-20.zip
unzip stanford-parser-full-2015-04-20.zip
unzip stanford-postagger-full-2015-04-20.zip
export STANFORDTOOLSDIR=$HOME
export CLASSPATH=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/stanford-postagger.jar:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/stanford-ner.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar
export STANFORD_MODELS=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/models:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/classifiers
Then:
>>> from nltk.tag.stanford import StanfordPOSTagger
>>> st = StanfordPOSTagger('english-bidirectional-distsim.tagger')
>>> st.tag('What is the airspeed of an unladen swallow ?'.split())
[(u'What', u'WP'), (u'is', u'VBZ'), (u'the', u'DT'), (u'airspeed', u'NN'), (u'of', u'IN'), (u'an', u'DT'), (u'unladen', u'JJ'), (u'swallow', u'VB'), (u'?', u'.')]
>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
[(u'Rami', u'PERSON'), (u'Eid', u'PERSON'), (u'is', u'O'), (u'studying', u'O'), (u'at', u'O'), (u'Stony', u'ORGANIZATION'), (u'Brook', u'ORGANIZATION'), (u'University', u'ORGANIZATION'), (u'in', u'O'), (u'NY', u'O')]
>>> from nltk.parse.stanford import StanfordParser
>>> parser=StanfordParser(model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz")
>>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog"))
[Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])]
>>> from nltk.parse.stanford import StanfordDependencyParser
>>> dep_parser=StanfordDependencyParser(model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz")
>>> print [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")]
[Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])])]
In Long:
Firstly , one must note that the Stanford NLP tools are written in Java and NLTK is written in Python . The way NLTK is interfacing the tool is through the call the Java tool through the command line interface.
Secondly , the NLTK
API to the Stanford NLP tools have changed quite a lot since the version 3.1. So it is advisable to update your NLTK package to v3.1.
Thirdly , the NLTK
API to Stanford NLP Tools wraps around the individual NLP tools, eg Stanford POS tagger, Stanford NER Tagger, Stanford Parser.
For the POS and NER tagger, it DOES NOT wrap around the Stanford Core NLP package .
For the Stanford Parser, it's a special case where it wraps around both the Stanford Parser and the Stanford Core NLP (personally, I have not used the latter using NLTK, i would rather follow @dimazest's demonstration on http://www.eecs.qmul.ac.uk/~dm303/stanford-dependency-parser-nltk-and-anaconda.html )
Note that as of NLTK v3.1, the STANFORD_JAR
and STANFORD_PARSER
variables is deprecated and NO LONGER used
In Longer:
STEP 1
Assuming that you have installed Java appropriately on your OS.
Now, install/update your NLTK version (see http://www.nltk.org/install.html):
sudo pip install -U nltk
sudo apt-get install python-nltk
For Windows (Use the 32-bit binary installation):
( Why not 64 bit? See https://github.com/nltk/nltk/issues/1079)
Then out of paranoia, recheck your nltk
version inside python:
from __future__ import print_function
import nltk
print(nltk.__version__)
Or on the command line:
python3 -c "import nltk; print(nltk.__version__)"
Make sure that you see 3.1
as the output.
For even more paranoia, check that all your favorite Stanford NLP tools API are available:
from nltk.parse.stanford import StanfordParser
from nltk.parse.stanford import StanfordDependencyParser
from nltk.parse.stanford import StanfordNeuralDependencyParser
from nltk.tag.stanford import StanfordPOSTagger, StanfordNERTagger
from nltk.tokenize.stanford import StanfordTokenizer
( Note : The imports above will ONLY ensure that you are using a correct NLTK version that contains these APIs. Not seeing errors in the import doesn't mean that you have successfully configured the NLTK API to use the Stanford Tools)
STEP 2
Now that you have checked that you have the correct version of NLTK that contains the necessary Stanford NLP tools interface. You need to download and extract all the necessary Stanford NLP tools.
TL;DR , in Unix:
cd $HOME
# Download the Stanford NLP tools
wget http://nlp.stanford.edu/software/stanford-ner-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-postagger-full-2015-04-20.zip
wget http://nlp.stanford.edu/software/stanford-parser-full-2015-04-20.zip
# Extract the zip file.
unzip stanford-ner-2015-04-20.zip
unzip stanford-parser-full-2015-04-20.zip
unzip stanford-postagger-full-2015-04-20.zip
In Windows / Mac:
STEP 3
Setup the environment variables such that NLTK can find the relevant file path automatically. You have to set the following variables:
Add the appropriate Stanford NLP .jar
file to the CLASSPATH
environment variable.
stanford-ner-2015-04-20/stanford-ner.jar
stanford-postagger-full-2015-04-20/stanford-postagger.jar
stanford-parser-full-2015-04-20/stanford-parser.jar
and the parser model jar file, stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar
Add the appropriate model directory to the STANFORD_MODELS
variable (ie the directory where you can find where the pre-trained models are saved)
stanford-ner-2015-04-20/classifiers/
stanford-postagger-full-2015-04-20/models/
In the code, see that it searches for the STANFORD_MODELS
directory before appending the model name. Also see that, the API also automatically tries to search the OS environments for the `CLASSPATH)
Note that as of NLTK v3.1, the STANFORD_JAR
variables is deprecated and NO LONGER used . Code snippets found in the following Stackoverflow questions might not work:
TL;DR for STEP 3 on Ubuntu
export STANFORDTOOLSDIR=/home/path/to/stanford/tools/
export CLASSPATH=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/stanford-postagger.jar:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/stanford-ner.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser.jar:$STANFORDTOOLSDIR/stanford-parser-full-2015-04-20/stanford-parser-3.5.2-models.jar
export STANFORD_MODELS=$STANFORDTOOLSDIR/stanford-postagger-full-2015-04-20/models:$STANFORDTOOLSDIR/stanford-ner-2015-04-20/classifiers
( For Windows : See https://stackoverflow.com/a/17176423/610569 for instructions for setting environment variables)
You MUST set the variables as above before starting python, then:
>>> from nltk.tag.stanford import StanfordPOSTagger
>>> st = StanfordPOSTagger('english-bidirectional-distsim.tagger')
>>> st.tag('What is the airspeed of an unladen swallow ?'.split())
[(u'What', u'WP'), (u'is', u'VBZ'), (u'the', u'DT'), (u'airspeed', u'NN'), (u'of', u'IN'), (u'an', u'DT'), (u'unladen', u'JJ'), (u'swallow', u'VB'), (u'?', u'.')]
>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
[(u'Rami', u'PERSON'), (u'Eid', u'PERSON'), (u'is', u'O'), (u'studying', u'O'), (u'at', u'O'), (u'Stony', u'ORGANIZATION'), (u'Brook', u'ORGANIZATION'), (u'University', u'ORGANIZATION'), (u'in', u'O'), (u'NY', u'O')]
>>> from nltk.parse.stanford import StanfordParser
>>> parser=StanfordParser(model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz")
>>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog"))
[Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']), Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])]
Alternatively, you could try add the environment variables inside python, as the previous answers have suggested but you can also directly tell the parser/tagger to initialize to the direct path where you kept the .jar
file and your models.
There is NO need to set the environment variables if you use the following method BUT when the API changes its parameter names, you will need to change accordingly. That is why it is MORE advisable to set the environment variables than to modify your python code to suit the NLTK version.
For example ( without setting any environment variables ):
# POS tagging:
from nltk.tag import StanfordPOSTagger
stanford_pos_dir = '/home/alvas/stanford-postagger-full-2015-04-20/'
eng_model_filename= stanford_pos_dir + 'models/english-left3words-distsim.tagger'
my_path_to_jar= stanford_pos_dir + 'stanford-postagger.jar'
st = StanfordPOSTagger(model_filename=eng_model_filename, path_to_jar=my_path_to_jar)
st.tag('What is the airspeed of an unladen swallow ?'.split())
# NER Tagging:
from nltk.tag import StanfordNERTagger
stanford_ner_dir = '/home/alvas/stanford-ner/'
eng_model_filename= stanford_ner_dir + 'classifiers/english.all.3class.distsim.crf.ser.gz'
my_path_to_jar= stanford_ner_dir + 'stanford-ner.jar'
st = StanfordNERTagger(model_filename=eng_model_filename, path_to_jar=my_path_to_jar)
st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
# Parsing:
from nltk.parse.stanford import StanfordParser
stanford_parser_dir = '/home/alvas/stanford-parser/'
eng_model_path = stanford_parser_dir + "edu/stanford/nlp/models/lexparser/englishRNN.ser.gz"
my_path_to_models_jar = stanford_parser_dir + "stanford-parser-3.5.2-models.jar"
my_path_to_jar = stanford_parser_dir + "stanford-parser.jar"
parser=StanfordParser(model_path=eng_model_path, path_to_models_jar=my_path_to_models_jar, path_to_jar=my_path_to_jar)
Edited
As of the current Stanford parser (2015-04-20), the default output for the lexparser.sh
has changed so the script below will not work.
But this answer is kept for legacy sake, it will still work with http://nlp.stanford.edu/software/stanford-parser-2012-11-12.zip though.
Original Answer
I suggest you don't mess with Jython, JPype. Let python do python stuff and let java do java stuff, get the Stanford Parser output through the console.
After you've installed the Stanford Parser in your home directory ~/
, just use this python recipe to get the flat bracketed parse:
import os
sentence = "this is a foo bar i want to parse."
os.popen("echo '"+sentence+"' > ~/stanfordtemp.txt")
parser_out = os.popen("~/stanford-parser-2012-11-12/lexparser.sh ~/stanfordtemp.txt").readlines()
bracketed_parse = " ".join( [i.strip() for i in parser_out if i.strip()[0] == "("] )
print bracketed_parse
链接地址: http://www.djcxy.com/p/91728.html
上一篇: Python中枚举的常用做法是什么?
下一篇: 斯坦福大学帕尔斯和NLTK