How to query an Elasticsearch index using Pyspark and Dataframes

Elasticsaerch's documentation only covers loading a complete index to Spark.

from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
df = sqlContext.read.format("org.elasticsearch.spark.sql").load("index/type")
df.printSchema()

How can you perform a query to return data from an Elasticsearch index and load them to Spark as a DataFrame using pyspark?


Below is how I do it.

General environment settings and command:

export SPARK_HOME=/home/ezerkar/spark-1.6.0-bin-hadoop2.6
export PYSPARK_DRIVER_PYTHON=ipython2

./spark-1.6.0-bin-hadoop2.6/bin/pyspark --driver-class-path=/home/eyald/spark-1.6.0-bin-hadoop2.6/lib/elasticsearch-hadoop-2.3.1.jar

Code:

from pyspark import SparkConf
from pyspark.sql import SQLContext

conf = SparkConf().setAppName("ESTest")
sc = SparkContext(conf=conf)
sqlContext = SQLContext(sc)

q ="""{
  "query": {
    "filtered": {
      "filter": {
        "exists": {
          "field": "label"
        }
      },
      "query": {
        "match_all": {}
      }
    }
  }
}"""

es_read_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : "titanic/passenger",
    "es.query" : q
}

es_rdd = sc.newAPIHadoopRDD(
    inputFormatClass="org.elasticsearch.hadoop.mr.EsInputFormat",
    keyClass="org.apache.hadoop.io.NullWritable", 
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable", 
    conf=es_read_conf)

sqlContext.createDataFrame(es_rdd).collect()

You can also define data-frame columns. Refer Here for more info.

Hope that it helps!


I am running my code in a EMR cluster from Amazon using pyspark. Then, the way I made it work was following these steps:

1) Put this bootstrap action in the cluster creation (to create localhost elasticsearch server):

s3://awssupportdatasvcs.com/bootstrap-actions/elasticsearch/elasticsearch_install.4.0.0.rb

2) I run these commands to populate the elasticsearch database with some data:

 curl -XPUT "http://localhost:9200/movies/movie/1" -d' {
   "title": "The Godfather",
   "director": "Francis Ford Coppola",
   "year": 1972
  }'

You can also run other curl commands if you wish, like:

curl -XGET http://localhost:9200/_search?pretty=true&q={'matchAll':{''}}

3) I inited pyspark using the following parameters:

pyspark --driver-memory 5G --executor-memory 10G --executor-cores 2 --jars=elasticsearch-hadoop-5.5.1.jar

I had downloaded the elasticsearch python client previously

4) I run the following code:

from pyspark import SparkConf
from pyspark.sql import SQLContext

q ="""{
  "query": {
    "match_all": {}
  }  
}"""

es_read_conf = {
    "es.nodes" : "localhost",
    "es.port" : "9200",
    "es.resource" : "movies/movie",
    "es.query" : q
}

es_rdd = sc.newAPIHadoopRDD(
    inputFormatClass="org.elasticsearch.hadoop.mr.EsInputFormat",
    keyClass="org.apache.hadoop.io.NullWritable", 
    valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable", 
    conf=es_read_conf)

sqlContext.createDataFrame(es_rdd).collect()

Then I finally got successful result from the command.


I have faced a issue similar to this to get geo-filtered data into a PySpark DataFrame. I am using elasticsearch-spark-20_2.11-5.2.2.jar with Spark version 2.1.1 and ES version 5.2. I was able to load the data into a DataFrame by specifying my query as an option while creating the DataFrame

My geo-query

q ="""{
  "query": {
        "bool" : {
            "must" : {
                "match_all" : {}
            },
           "filter" : {
                "geo_distance" : {
                    "distance" : "100km",
                    "location" : {
                        "lat" : 35.825,
                        "lon" : -87.99
                    }
                }
            }
        }
    }
}"""

I used the following command to load data into DataFrame

spark_df = spark.read.format("es").option("es.query", q).load("index_name")
链接地址: http://www.djcxy.com/p/92472.html

上一篇: 使用键入的角度浮动输入标签

下一篇: 如何使用Pyspark和Dataframe查询Elasticsearch索引