增加大的效率

我是Python新手,目前正在使用Python 2.我有一些源文件,每个文件都包含大量数据(大约1900万行)。 它看起来像下面这样:

apple   t N   t apple
n&apos
garden  t N   t garden
btamd 
great   t Adj t great
nice    t Adj t (unknown)
etc

我的任务是在每个文件的第三列搜索一些目标词,并且每当在语料库中找到目标词时,该词前后的10个词必须被添加到多维词典中。

编辑:应该排除包含'&','''或字符串'(未知)'的行。

我试图用readlines()和enumerate()来解决这个问题,就像你在下面的代码中看到的一样。 代码做了它应该做的事情,但显然对于源文件中提供的数据量来说效率不够高。

我知道readlines()或read()不应该用于庞大的数据集,因为它会将整个文件加载到内存中。 尽管如此,逐行阅读文件,但我没有设法使用枚举方法来获取目标单词前后的10个单词。 我也无法使用mmap,因为我没有权限在该文件上使用它。

所以,我认为readlines方法有一些大小限制是最有效的解决方案。 然而,为了达到这个目的,我不会因为每次达到大小限制的末尾而出现一些错误,因为代码刚刚中断,目标单词不会被捕获到后的10个单词?

def get_target_to_dict(file):
targets_dict = {}
with open(file) as f:
    for line in f:
            targets_dict[line.strip()] = {}
return targets_dict

targets_dict = get_target_to_dict('targets_uniq.txt')
# browse directory and process each file 
# find the target words to include the 10 words before and after to the dictionary
# exclude lines starting with <,-,; to just have raw text

    def get_co_occurence(path_file_dir, targets, results):
        lines = []
        for file in os.listdir(path_file_dir):
            if file.startswith('corpus'):
            path_file = os.path.join(path_file_dir, file)
            with gzip.open(path_file) as corpusfile:
                # PROBLEMATIC CODE HERE
                # lines = corpusfile.readlines()
                for line in corpusfile:
                    if re.match('[A-Z]|[a-z]', line):
                        if '(unknown)' in line:
                            continue
                        elif '' in line:
                            continue
                        elif '&' in line:
                            continue
                        lines.append(line)
                for i, line in enumerate(lines):
                    line = line.strip()
                    if re.match('[A-Z][a-z]', line):
                        parts = line.split('t')
                        lemma = parts[2]
                        if lemma in targets:
                            pos = parts[1]
                            if pos not in targets[lemma]:
                                targets[lemma][pos] = {}
                            counts = targets[lemma][pos]
                            context = []
                            # look at 10 previous lines
                            for j in range(max(0, i-10), i):
                                context.append(lines[j])
                            # look at the next 10 lines
                            for j in range(i+1, min(i+11, len(lines))):
                                context.append(lines[j])
                            # END OF PROBLEMATIC CODE
                            for context_line in context:
                                context_line = context_line.strip()
                                parts_context = context_line.split('t')
                                context_lemma = parts_context[2]
                                if context_lemma not in counts:
                                    counts[context_lemma] = {}
                                context_pos = parts_context[1]
                                if context_pos not in counts[context_lemma]:
                                    counts[context_lemma][context_pos] = 0
                                counts[context_lemma][context_pos] += 1
                csvwriter = csv.writer(results, delimiter='t')
                for k,v in targets.iteritems():
                    for k2,v2 in v.iteritems():
                        for k3,v3 in v2.iteritems():
                            for k4,v4 in v3.iteritems():
                                csvwriter.writerow([str(k), str(k2), str(k3), str(k4), str(v4)])
                                #print(str(k) + "t" + str(k2) + "t" + str(k3) + "t" + str(k4) + "t" + str(v4))

results = open('results_corpus.csv', 'wb')
word_occurrence = get_co_occurence(path_file_dir, targets_dict, results)

为了完整性,我复制了整个代码部分,因为它是一个函数的一部分,它从所有提取的信息中创建一个多维字典,然后将其写入一个csv文件。

我真的很感激任何提示或建议,使此代码更有效率。

编辑我更正了代码,以便它将目标单词前后的确切10个单词考虑在内


我的想法是创建一个缓冲区,在10行之前存储,另一个缓冲区在10行之后存储,当文件被读取时,它将被压入缓冲区之前,并且如果大小超过10,缓冲区将弹出

对于后缓冲区,我从文件迭代器1中克隆另一个迭代器。 然后在循环中并行运行两个迭代器,并使用运行10次迭代的克隆迭代器来获取10行之后的代码。

这避免了使用readlines()并加载内存中的整个文件。 希望它适用于你的实际情况

编辑:如果第3列不包含任何'&','','(unknown)',只填充之前的缓冲区。还将split(' t')更改为split(),以便全部处理空格或制表符

import itertools
def get_co_occurence(path_file_dir, targets, results):
    excluded_words = ['&', '', '(unknown)'] # modify excluded words here 
    for file in os.listdir(path_file_dir): 
        if file.startswith('testset'): 
            path_file = os.path.join(path_file_dir, file) 
            with open(path_file) as corpusfile: 
                # CHANGED CODE HERE
                before_buf = [] # buffer to store before 10 lines 
                after_buf = []  # buffer to store after 10 lines 
                corpusfile, corpusfile_clone = itertools.tee(corpusfile) # clone file iterator to access next 10 lines 
                for line in corpusfile: 
                    line = line.strip() 
                    if re.match('[A-Z]|[a-z]', line): 
                        parts = line.split() 
                        lemma = parts[2]

                        # before buffer handling, fill buffer excluded line contains any of excluded words 
                        if not any(w in line for w in excluded_words): 
                            before_buf.append(line) # append to before buffer 
                        if len(before_buf)>11: 
                            before_buf.pop(0) # keep the buffer at size 10 
                        # next buffer handling
                        while len(after_buf)<=10: 
                            try: 
                                after = next(corpusfile_clone) # advance 1 iterator 
                                after_lemma = '' 
                                after_tmp = after.split()
                                if re.match('[A-Z]|[a-z]', after) and len(after_tmp)>2: 
                                    after_lemma = after_tmp[2]
                            except StopIteration: 
                                break # copy iterator will exhaust 1st coz its 10 iteration ahead 
                            if after_lemma and not any(w in after for w in excluded_words): 
                                after_buf.append(after) # append to buffer
                                # print 'after',z,after, ' - ',after_lemma
                        if (after_buf and line in after_buf[0]):
                            after_buf.pop(0) # pop off one ready for next

                        if lemma in targets: 
                            pos = parts[1] 
                            if pos not in targets[lemma]: 
                                targets[lemma][pos] = {} 
                            counts = targets[lemma][pos] 
                            # context = [] 
                            # look at 10 previous lines 
                            context= before_buf[:-1] # minus out current line 
                            # look at the next 10 lines 
                            context.extend(after_buf) 

                            # END OF CHANGED CODE
                            # CONTINUE YOUR STUFF HERE WITH CONTEXT

用Python 3.5编写的一个功能替代品。 我简化了你的例子,双方只需要5个字。 还有其他有关垃圾价值过滤的简化,但只需要稍作修改。 我将使用PyPI的package fn来使这个功能代码更加自然。

from typing import List, Tuple
from itertools import groupby, filterfalse
from fn import F

首先,我们需要提取列:

def getcol3(line: str) -> str:
    return line.split("t")[2]

然后我们需要将行分割成由谓词分隔的块:

TARGET_WORDS = {"target1", "target2"}

# this is out predicate
def istarget(word: str) -> bool:
    return word in TARGET_WORDS        

让过滤器垃圾,并写一个功能,采取最后和前5个字:

def isjunk(word: str) -> bool:
    return word == "(unknown)"

def first_and_last(words: List[str]) -> (List[str], List[str]):
    first = words[:5]
    last = words[-5:]
    return first, last

现在,让我们看看这些组:

words = (F() >> (map, str.strip) >> (filter, bool) >> (map, getcol3) >> (filterfalse, isjunk))(lines)
groups = groupby(words, istarget)

现在,处理这些组

def is_target_group(group: Tuple[str, List[str]]) -> bool:
    return istarget(group[0])

def unpack_word_group(group: Tuple[str, List[str]]) -> List[str]:
    return [*group[1]]

def unpack_target_group(group: Tuple[str, List[str]]) -> List[str]:
    return [group[0]]

def process_group(group: Tuple[str, List[str]]):
    return (unpack_target_group(group) if is_target_group(group) 
            else first_and_last(unpack_word_group(group)))

最后的步骤是:

words = list(map(process_group, groups))

PS

这是我的测试案例:

from io import StringIO

buffer = """
_t_tword
_t_tword
_t_tword
_t_t(unknown)
_t_tword
_t_tword
_t_ttarget1
_t_tword
_t_t(unknown)
_t_tword
_t_tword
_t_tword
_t_ttarget2
_t_tword
_t_t(unknown)
_t_tword
_t_tword
_t_tword
_t_t(unknown)
_t_tword
_t_tword
_t_ttarget1
_t_tword
_t_t(unknown)
_t_tword
_t_tword
_t_tword
"""

# this simulates an opened file
lines = StringIO(buffer)

鉴于这个文件,你会得到这个输出:

[(['word', 'word', 'word', 'word', 'word'],
  ['word', 'word', 'word', 'word', 'word']),
 (['target1'], ['target1']),
 (['word', 'word', 'word', 'word'], ['word', 'word', 'word', 'word']),
 (['target2'], ['target2']),
 (['word', 'word', 'word', 'word', 'word'],
  ['word', 'word', 'word', 'word', 'word']),
 (['target1'], ['target1']),
 (['word', 'word', 'word', 'word'], ['word', 'word', 'word', 'word'])]

从这里你可以删除前5个字和最后5个字。

链接地址: http://www.djcxy.com/p/94009.html

上一篇: increase efficiency of large

下一篇: Azure Google Authentication shows Error:disallowed